Optimal stopping: Bermudan strategies meet non-linear evaluations

Miryana Grigorova University of Warwick

January 6, 2023

Abstract:

We address an optimal stopping problem over the set of Bermudan-type strategies Θ (which we understand in a more general sense than the stopping strategies for Bermudan options in finance) and with non-linear operators (non-linear evaluations) assessing the rewards, under general assumptions on the non-linear operators ρ . We provide a characterization of the value family V in terms of what we call the (Θ, ρ) -Snell envelope of the the payoff family. We establish a Dynamic Programming Principle. We provide an optimality criterion in terms of a (Θ, ρ) -martingale property of V on a stochastic interval. We investigate the (Θ, ρ) -martingale structure and we show that the "first time" when the value family coincides with the payoff family is optimal. The reasoning simplifies in the case where there is a finite number n of pre-described stopping times, where n does *not* depend on the scenario ω . We provide examples of non-linear operators entering our framework.