Parameter estimation in stochastic heat equation with fractional Brownian motion

Diana Avetisian, Kostiantyn Ralchenko

Department of Probability Theory, Statistics and Actuarial Mathematics, Taras Shevchenko National University of Kyiv, Ukraine

We study stochastic heat equations with three types of noises: white noise, fractional Brownian noise and a mixed fractional Brownian noise. We investigate the covariance structure, stationarity, and asymptotic behavior of the solution for each case.

For the stochastic heat equation with white noise we construct a strongly consistent and asymptotically normal estimator of diffusion parameter.

For the equation driven by a fractional Brownian motion we construct strongly consistent estimators of two unknown parameters, namely, the diffusion parameter σ and the Hurst parameter $H \in (0, 1)$. We also prove joint asymptotic normality of the estimators in the case $H \in (0, \frac{3}{4})$.

For the stochastic heat equation with mixed fractional Brownian motion we construct a strongly consistent estimator for the Hurst index H and prove its asymptotic normality for H < 3/4. Then assuming the parameter H to be known, we deal with joint estimation of the coefficients at Wiener process and at fractional Brownian motion.