
                      Optimal ratcheting of dividends in insurance

         Hansjoerg Albrecher (University of Lausanne)

In this talk, we give an overview of recent developments in identifying 
optimal dividend payment strategies for an insurance company, 
when the dividend rate is not allowed to decrease. The optimality criterion 
here is to maximize the expected value of the aggregate discounted 
dividend payments up to the time of ruin. In the framework of the classical 
risk model and its Brownian approximation, the solution of the 
corresponding two-dimensional optimal control problem is presented and 
optimal strategies are numerically determined for several concrete 
examples. 
The implementations illustrate that the restriction of ratcheting does not 
lead to a large efficiency loss when compared to the classical 
unconstrained optimal dividend strategy. We also consider an extension of 
the results to drawdown constraints on the dividend rate, where a curious 
square-root rule emerges. 



ON EXPONENTIAL ALMOST SURE
SYNCHRONIZATION OF A ONE-DIMENSIONAL

DIFFUSION WITH NONREGULAR DRIFT

OLGA ARYASOVA

The main object of our study is a one-dimensional stochastic differ-
ential equation (SDE) of the type{

dφt = (−λφt + a(φt)) dt+ σ(φt) dwt, t > 0,

φ0 ≡ x,

where λ is a positive real number, the drift a is measurable, the diffusion
coefficient σ is a Lipschitz continuous non-degenerate function, and
(wt)t≥0 is a Wiener process.

Thanks to the celebrated transform method, Zvonkin proved in [1]
that this SDE admits a unique strong solution (Xx

t )t>0. Moreover, it
was proved during the last decade that due to the presence of noise,
the flow (Xx

t )t≥0,x∈R shows good spatial-regularity properties even if the
drift function is discontinuous. Concerning the asymptotic stability of
the flow there are much less results in the literature.

We solve the question of almost sure synchronization in high dissipa-
tive regime (λ large). We prove that two trajectories of that diffusion
converge almost surely to one another at an exponential explicit rate
as soon as the dissipative coefficient is large enough. The result is
obtained for a wide class of SDEs with irregular drift functions: the
function a is only supposed to be the sum of a Lipschitz function and
of a bounded measurable one. Furthermore, we exhibit an explicit ex-
ponential convergence rate to 0 for |Xx

t −Xy
t |, both almost surely and

in Lp. To our knowledge it is the first result of that type under such
general assumptions.

In the spirit of Zvonkin, our approach is based on an accurately cho-
sen space-transform in such a way that the transformed SDE - written
via the new coordinate - has a simpler structure. A similar method
could theoretically be used in more general context - multidimensional
diffusions or Lévy-noise. However, the construction of corresponding
transforms requires the investigation of elliptic equations whose solu-
tion is a non-trivial problem.
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Parameter estimation in stochastic heat equation with
fractional Brownian motion

Diana Avetisian, Kostiantyn Ralchenko
Department of Probability Theory, Statistics and Actuarial Mathematics,

Taras Shevchenko National University of Kyiv, Ukraine

We study stochastic heat equations with three types of noises: white noise,
fractional Brownian noise and a mixed fractional Brownian noise. We investigate
the covariance structure, stationarity, and asymptotic behavior of the solution
for each case.

For the stochastic heat equation with white noise we construct a strongly
consistent and asymptotically normal estimator of diffusion parameter.

For the equation driven by a fractional Brownian motion we construct strongly
consistent estimators of two unknown parameters, namely, the diffusion param-
eter σ and the Hurst parameter H ∈ (0, 1). We also prove joint asymptotic
normality of the estimators in the case H ∈ (0, 3

4 ).
For the stochastic heat equation with mixed fractional Brownian motion we

construct a strongly consistent estimator for the Hurst index H and prove its
asymptotic normality for H < 3/4. Then assuming the parameter H to be
known, we deal with joint estimation of the coefficients at Wiener process and
at fractional Brownian motion.
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PROPERTIES OF UTILITY MAXIMIZATION FUNCTIONALS FOR
NON-CONCAVE UTILITY FUNCTION IN COMPLETE MARKET

MODEL

OLENA BAHCHEDJIOGLOU AND GEORGIY SHEVCHENKO

This work is devoted to the study of the utility maximization problem. There

are a lot of different aspects which can be considered while solving the optimiza-

tion problem, such as completeness of the market, properties of the utility function,

model settings, modeling of the payoff, and so on. We consider the complete market

model, non-decreasing upper-semicontinuous non-concave utility function satisfying

mild growth condition, and study the standard and constrained optimization prob-

lems while considering both the standard and robust utility maximization problems.

We proved the existence and uniqueness of the optimal solution to the standard

non-concave utility maximization problem and constructed its explicit form under

the assumption of standard budget constraints. It was shown that this solution is

also a unique optimal solution for the maximization problem of the concavified utility

function.

In the case of implementing an additional upper bound given by some random vari-

able, we proved a similar theorem if the given random variable is discrete. Moreover,

we presented examples that show that previous conclusions may fail in the case of a

continuous random variable that represents an upper bound.

Subsequently, in the case of a robust utility maximization problem deriving the

optimal solution is based on the study of the minimax identity for the initial non-

concave utility function. We obtained equalities and inequalities to relate the robust

utility functional of the initial utility function and its concavification and derived

the assumptions under which minimax identity holds for the initial utility function.

Besides, similar results were obtained in the case with an additional upper bound

on the budget, represented, as before, by some random variable. The crucial step

for obtaining the mentioned results with implementing an additional upper bound is

the use of the regular conditional distribution which sheds new light on the possible

approaches for solving the optimization problem.
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Large-scale Wasserstein gradient flows with 
applications for computing diffusions

Evgeny Burnaev

Skolkovo Institute of Science and Technology 

Wasserstein gradient flows provide a powerful means of 
understanding and solving many diffusion equations. Specifically, 
Fokker-Planck equations, which model the diffusion of probability 
measures, can be understood as gradient descent over entropy 
functionals in Wasserstein space. This equivalence, introduced by 
Jordan, Kinderlehrer and Otto, inspired the so-called JKO scheme 
to approximate these diffusion processes via an implicit 
discretization of the gradient flow in Wasserstein space. Solving the 
optimization problem associated to each JKO step, however, 
presents serious computational challenges. We introduce a scalable 
method to approximate Wasserstein gradient flows, targeted to 
machine learning applications. Our approach relies on input-convex 
neural networks (ICNNs) to discretize the JKO steps, which can be 
optimized by stochastic gradient descent. Unlike previous work, our 
method does not require domain discretization or particle 
simulation. As a result, we can sample from the measure at each 
time step of the diffusion and compute its probability density. We 
demonstrate our algorithm's performance by computing diffusions 
following the Fokker-Planck equation and apply it to unnormalized 
density sampling as well as nonlinear filtering.



Joint calibration of SPX and VIX options with 
signature-based models  

Christa Cuchiero
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We consider a stochastic volatility model where the dynamics of the volatility 
are described by linear functions of the (time extended) signature of a 
primary underlying process, which is supposed to be some multidimensional 
continuous semimartingale. Under the additional assumption that this 
primary process is of polynomial type, we obtain closed form expressions for 
the VIX squared, exploiting the fact that the truncated signature of a 
polynomial process is again a polynomial process. Adding to such a primary 
process the Brownian motion driving the stock price, allows then to express 
both the log-price and the VIX squared  as linear functions of the signature of 
the corresponding augmented process. This feature can then be efficiently 
used for pricing and calibration purposes. Indeed, as the signature samples 
can be easily precomputed offline, the calibration task can be split into offline 
sampling and a standard optimization. For both the SPX and VIX options we 
obtain highly accurate calibration results, showing that this model class 
allows to solve the joint calibration problem without adding jumps or rough 
volatility, but just path-dependence via the signature process.



Backward Stochastic Differential Equations with 
interaction 

Jasmina Đorđević 

University of Niš, Serbia and  University of Oslo, Norway 

Backward stochastic differential equations with interaction (shorter BSDEs 
with interaction) are introduced. Existence and uniqueness result for 
BSDE with interaction is proved under version of Lipschitz condition with 
respect to Wasserstein distance. Such kind of BSDE arises naturally 
when considering the Monge-Kantorovich problem. In the proof we start 
from discrete measures using known result of Pardoux and Peng and 
approximate general measure via Wasserstein distance. 



Second Order Random Fields and Yield Curve Modeling 

Raphael Douady 

Paris 1 Panthéon-Sorbonne 

The calibration of yield curve models imply the difficult task of estimating the 
covariance structure of the rates at the various maturities. This covariance 
structure drives the shape of risk factors in the HJM or BGM models. 
Expanding to infinite dimensional models, using either SPDEs or cylindrical 
Brownian motions, the shape of risk factors becomes even more unstable. 
Forcing a finite dimensional model, even more so, forcing a Markovian 
constraint on the dynamics leads to instabilities when recalibrating the 
model. We introduce a different type of constraint on the covariance 
structure, based on random fields after a change of variable in the range of 
maturities. This provides a very stable variance structure and provides a 
framework which is easy to expand to infinite dimensions.
We then propose to make this volatility structure stochastic in the space of 
Hilbert-Schmidt operators and state an existence result of mild solutions 
when a smoothing term is introduced in the yield curve dynamics.

Joint work with Zeyu Cao.



New Exact Solutions for PDEs with  Mixed 
Boundary Conditions

Martino Grasselli

University of Padua

We develop methods for the solution of inhomogeneous 
Robin type  boundary value problems (BVPs) that arise 
for certain linear parabolic Partial Differential 
Equations (PDEs) on a half line, as well a second order 
generalisation. We are able to obtain non-standard 
solutions to equations arising in a range of areas, 
including mathematical finance, stochastic analysis, 
hyperbolic geometry and mathematical physics. Our 
approach  uses the odd and even Hilbert transform 
methods. The solutions we obtain and the method itself 
seem to be new.

Joint work with Mark Craddock and  Andrea Mazzoran



Optimal stopping:
Bermudan strategies meet non-linear

evaluations

Miryana Grigorova
University of Warwick

January 6, 2023

Abstract:

We address an optimal stopping problem over the set of Bermudan-type
strategies Θ (which we understand in a more general sense than the stopping
strategies for Bermudan options in finance) and with non-linear operators
(non-linear evaluations) assessing the rewards, under general assumptions
on the non-linear operators ρ. We provide a characterization of the value
family V in terms of what we call the (Θ, ρ)-Snell envelope of the the pay-
off family. We establish a Dynamic Programming Principle. We provide
an optimality criterion in terms of a (Θ, ρ)-martingale property of V on a
stochastic interval. We investigate the (Θ, ρ)-martingale structure and we
show that the ”first time” when the value family coincides with the pay-
off family is optimal. The reasoning simplifies in the case where there is a
finite number n of pre-described stopping times, where n does not depend
on the scenario ω. We provide examples of non-linear operators entering our
framework.
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Title: Rogue Traders 

Abstract: 

Investing on behalf of a firm, a trader can feign personal skill by  
committing fraud that with high probability remains undetected and  
generates small gains, but that with low probability bankrupts the firm,  
offsetting ostensible gains. Honesty requires enough skin in the game:  
if two traders with isoelastic preferences operate in continuous-time  
and one of them is honest, the other is honest as long as the respective  
fraction of capital is above an endogenous fraud threshold that depends  
on the trader’s preferences and skill. If both traders can cheat, they  
reach a Nash equilibrium in which the fraud threshold of each of them is  
lower than if the other one were honest. More skill, higher risk  
aversion, longer horizons, and greater volatility all lead to honesty on  
a wider range of capital allocations between the traders. 

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3870658

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3870658


Ruin problems with investments on a finite 
interval:  PIDEs and their viscosity solutions

Yuri Kabanov 

Université de Franche-Comté and Lomonosov MSU 

We study the ruin problem when an insurance company invests  its reserve in 
a risky asset whose the price dynamics is given by a geometric Lévy process.  
We show that  the ruin probabilities on a finite interval satisfy a partial integro-
differential equation understood in the viscosity sense and prove a result on 
the uniqueness of solution for a boundary value problem.   

Joint work with Viktor Antipov. 
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Mild to classical solutions for XVA equations under

stochastic volatility

Damiano Brigo∗ Federico Graceffa∗∗ Alexander Kalinin §

December 23, 2021

Abstract

We extend the valuation of contingent claims in presence of default, collateral and
funding to a random functional setting and characterise pre-default value processes
by martingales. Pre-default value semimartingales can also be described by BSDEs
with random path-dependent coefficients and martingales as drivers. En route, we
generalise previous settings by relaxing conditions on the available market informa-
tion, allowing for an arbitrary default-free filtration and constructing a broad class
of default times. Moreover, under stochastic volatility, we characterise pre-default
value processes via mild solutions to parabolic semilinear PDEs and give sufficient
conditions for mild solutions to exist uniquely and to be classical.

MSC2010 classification: 91G20, 91G80, 60G40, 60H20, 60H30, 35K58.
Keywords: XVA, valuation, collateral, funding costs, default time, stochastic volatility,
stochastic differential equation, mild solution, semilinear parabolic PDE.

1 Introduction

The aim of this paper is to address the valuation of contingent claims in a financial market
under default risk, collateralisation and funding costs and benefits. Based on a general
probabilistic setting, we develop a market model from previous works that consists of an
investor and a counterparty entering a derivative contract. To evaluate such an agreement
with default-free information only, we derive a nonlinear pre-default valuation equation
and characterise its solutions, the pre-default value processes.

By focusing on a stochastic volatility model for the underlying risky asset and its
generalised variance, or simply quasi variance, we will reach a parabolic semilinear partial
differential equation (PDE) that establishes a direct relation between pre-default value
processes and mild solutions. While pursuing this goal, we will achieve further extensions
of preceding papers in this area, and the two articles [11] and [12] in particular, that focused
on viscosity and classical solutions. Our main contributions to the existing literature can
be described as follows:

(1) The available market information may fail to provide any knowledge about the first
time of default. In the earlier work [12] even full insight into the separate default
times of the investor and the counterparty was required, as the two latter filtrations
in (3.1) were supposed to be equal.

∗Dep. of Mathematics, Imperial College London, United Kingdom. damiano.brigo@imperial.ac.uk
∗∗Dep. of Mathematics, Imperial College London, United Kingdom. federico.graceffa@gmail.com

§Dep. of Mathematics, LMU Munich, Germany. alex.kalinin@mail.de. The third author gratefully

acknowledges support from Imperial College London through a former Chapman fellowship.
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(2) To handle the general relation (3.1) between the two filtrations that model the
default-free and the available market information, a variety of representations for
conditional expectations is derived in Section 2.2. Thereby, Corollary 2.2 explains
how to identify random quantities before the first time of default occurs and the
default-free filtration is arbitrary. In particular, it does not need to coincide with
the (augmented) natural filtration of a diffusion.

(3) The default times of the two parties, except being conditionally independent and
admitting a distribution satisfying weak regularity conditions, are arbitrary. This is
based on an explicit construction in Section 2.3, which allows for a detailed analysis
of default times, including a formula for their survival functions in Proposition 2.10.
Hitting times that involve a gamma distribution, or more specifically, an exponential
distribution, as considered for example in [12], are feasible, as shown in Example 2.12,
and we refer to [21] for a discussion on related issues on immersion.

(4) The pre-default valuation equation (VE) that only requires default-free information
is deduced from the generalised valuation equation (3.14) in Proposition 3.5. To this
end, for all cash flows, costs and benefits appearing in the valuation, we give concise
financial interpretations and state the necessary measurability, path regularity and
integrability conditions in Sections 3.2 and 3.3.

(5) We give two characterisations for pre-default value processes, the solutions to (VE).
While Proposition 3.6 relates pre-default valuation with the martingale property of
the process in (3.20), Corollary 3.8 describes value processes that are semimartingales
by the BSDE (3.22) with random path-dependent coefficients, driven by a martingale
and analysed in Proposition 3.7. In the previous work [15], for instance, necessary
and sufficient conditions for the existence of solutions to the pre-default valuation
equation were not explicitly given.

(6) A stochastic volatility model, described by the two-dimensional SDE (4.1), is intro-
duced in Section 4.1. Regarding the quasi variance process, we give a criterion for
solutions to one-dimensional SDEs to have a.s. positive paths in Proposition 4.4, by
extending the main result in [29], and demonstrate in Example 4.5 that sums of
power functions such as (4.10) may appear as drift and diffusion coefficients. Com-
bined with the uniqueness and existence results from [26], Proposition 4.6 proves that
the transformed SDE (4.11), obtained by taking the log-price process, is uniquely
solvable and yields a diffusion. Then, Example 4.7 applies this result to the specific
SDE (4.13), which extends the Heston model [23] and the Garch diffusion model [28].

(7) By imposing the dynamics (4.1) on the price process and its quasi variance in
the market model from Section 3, we eventually reach the parabolic semilinear
PDE (4.20). One of the main achievements of the article is that we characterise
pre-default value processes by means of mild solutions to (4.20) in Theorem 4.10.
As the derived diffusion serves as Makov process in the setting of [25], we obtain
unique bounded mild solutions in Proposition 4.12 and, under the conditions of
Corollary 4.14, mild solutions are in fact classical.

To the best of our knowledge, our paper is the first work on nonlinear valuation and
XVA equations to propose mild solutions as middle ground between viscosity and classical
solutions for parabolic semilinear valuation PDEs, including also stochastic volatility.

While viscosity solutions can be described by means of test functions to bypass a priori
considerations regarding differentiability, mild solutions stem from related implicit integral
equations and allow for Picard iterations, as Proposition 2.12 in [25] shows, for example.
Further, the mild solution concept leads to general derivative formulas, deduced in [32],
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using Lemma 1.1, Corollary 2.8 and Theorems 2.9 and 3.2 therein. In this sense mild
solutions are more tractable than those of viscosity type. If a parabolic semilinear PDE,
which may also be path-dependent, admits continuous coefficients, then, under certain
linear and polynomial growth conditions and a Lipschitz condition, Corollary 4.17 in [17]
asserts that the two notions coincide. The valuation PDE that we derive, however, does
not meet these regularity conditions and, according to the characterisation that we find
in Theorem 4.10, the mild solution concept is indeed suitable.

Note that the mathematical and modelling achievements of this paper are not obtained
in the most general setting in terms of financial adjustments, as we do not include capital
valuation adjustments and initial margins in our analysis. However, we believe that the
default, collateral as variation margin and funding effects we are considering are more than
sufficient to highlight the mathematical difficulties of these nonlinear valuation problems.
For this purpose, we would like to contextualize this work in the broad area of nonlinear
valuation and valuation adjustments, or ‘XVA’.

Prior to the financial crisis of 2007-2008, financial institutions at times ignored the
credit risk of highly-rated counterparties in valuing and hedging contingent claims. Then,
in a short period of about one month, around October 2008, eight mainstream financial
institutions defaulted (Fannie Mae, Freddie Mac, Lehman Brothers, Washington Mutual,
Landsbanki, Glitnir and Kaupthing, to which we could also add Merrill Lynch that was
saved through a merge with Bank of America). This highlighted dramatically the fact
that no institution could be considered default-free, no matter how systemic or presti-
gious. This forced dealers and financial institutions to reassess the valuation of contingent
claims, leading to a much more widespread adoption of collateralisation, through various
adjustments to their book value.

We will now list some of these adjustments as separate effects, but one should keep
in mind that the nonlinearity of the valuation equations makes this separation quite ar-
tificial. In any case it is difficult to do justice to the entire literature on such valuation
adjustments. For a full introduction to credit and funding valuation adjustments and all
related references we refer to the first chapter of either [14] or [18]. Here we will only pro-
vide a quick summary for context and a few references, before moving to the full nonlinear
valuation equation and its analysis.

Firstly, the credit valuation adjustment (CVA) has been introduced to correct the
value of a trade with the expected costs borne by one dealer in scenarios where its coun-
terparty defaults. CVA had been around for some time, see for example [13], and its most
sophisticated version can include credit migration and ratings transition, as shown in [5].
Further, it already leads to BSDEs under replacement closeout, which was taken into ac-
count in [20] and [15]. It is worth pointing out that collateralisation has not completely
eliminated CVA. In [10], for instance, it is shown that for some particular deals gap risk
may leave a quite large CVA even in presence of daily collateralisation. This is one of
the reasons for the introduction of the initial margin as a further collateralisation tool
supplementing the variation margin.

Secondly, the debit valuations adjustment (DVA), that on one hand is simply CVA
seen from the other side, corrects the price with the expected benefits to the dealer due
to scenarios where the dealer has an early default on the trade. DVA may lead to a con-
troversial profit that can be booked when the credit quality of the dealer deteriorates,
which has led a discussion on considering it more of a funding benefit than a debit adjust-
ment. While the Basel Committee has made recommendations against the use of DVA,
accounting standards by the FASB accept DVA for fair value. A detailed discussion can
be found in [14]. On top of this, DVA is very difficult to hedge, as this would involve
selling protection on oneself, and this is a further reason why regulators opposed it.

After CVA and DVA, the funding valuation adjustment (FVA) was introduced. FVA is

3



the price adjustment due to the cost of funding the trading activity surrounding a trade.
To maintain a trade, the trading desk needs to borrow funds from the bank treasury,
giving back funds occasionally. All borrowing and lending has a cost or remuneration in
terms of interest fees, and this has to be accounted for. Following FVA, a capital valuation
adjustment (KVA) has started being discussed for the cost of capital one has to set aside
in order to be able to trade. We will not address KVA here, since its very definition is
currently subject to intense debate in the industry. Instead, we refer to [19] for a recent
work addressing the cost of capital. A further adjustment that has been considered is a
charge for the cost of setting up the initial margin for a trade. This is often called margin
valuation adjustment, or MVA, and was assessed for example in [15] and more recently
in [3], where multiple curve effects are also discussed.

All such adjustments may concern both over the counter (OTC) derivatives trades
and derivatives trades done through central clearing houses (CCP). These two cases are
compared in [15], where the full mathematical structure of the problem of valuation under
possibly asymmetric initial and variation margins, funding costs, liquidation delay and
credit gap risk is explored. This nonlinear valuation analysis has been made more rigorous
in the subsequent paper [12] and by many other authors.

For an early example of how asymmetric interest rates, even in absence of credit risk,
lead to BSDEs see [22]. The paper [4] deals with the mathematical analysis of valua-
tion equations in presence of all the above-mentioned effects and risks, except KVA. CVA
and FVA are analysed in [7] in the area of life insurance contracts, and longevity swaps
in particular. Finally, an in-depth discussion of replication in presence of default and
funding effects is presented in [9], discussing also valuation in general settings when repli-
cation is not assumed. This article contributes to the literature on nonlinear valuation
equations, from BSDEs to PDEs, of the type seen in the above-mentioned works, espe-
cially [20], [15], [4] and [12], by focusing on mild solutions among the other contributions
listed earlier.

The paper is structured as follows. Section 2 sets up the notation and discusses the
required probabilistic methods to handle the financial market model. Namely, after a
concise introduction of the notation in Section 2.1, we deal with conditional expectations
in Section 2.2 and provide a class of default times in Section 2.3.

In Section 3 we specify and analyse the market model. While Section 3.1 explains the
setting, all the cash flows, costs and benefits that are relevant to determine the price of
the derivative contract are quantified in Section 3.2. Then, in Section 3.3 the pre-default
valuation equation (VE) is derived and its solutions, the pre-default value processes, are
characterised in Proposition 3.6 and Corollary 3.8.

In Section 4 we impose a general stochastic volatility model on the underlying risky
asset and its quasi variance to deduce the pre-default valuation PDE (4.20). To this
end, Section 4.1 considers the SDE (4.1) that governs the volatility model with regard to
pathwise uniqueness, strong existence, moment estimates and positivity of paths. As a
result, Proposition 4.6 shows that the transformed SDE (4.11) yields a diffusion.

Section 4.2 discusses a deterministic setting of the market model for the valuation PDE
to prevail, and pre-default value processes are characterised by means of mild solutions
in Theorem 4.10 there. An existence and uniqueness result for bounded mild solutions is
derived in Proposition 4.12 and sufficient conditions for mild solutions to be classical are
given in Corollary 4.14.

All proofs for the probabilistic methods in Section 2.2, the constructed hitting times
in Section 2.3 and the market model of Section 3 are deferred to Section 5. The results
for the volatility model and the valuation PDE in Section 4 are proven in Section 6.
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2 Preliminaries

Throughout the paper, let (Ω, F , P ) denote a probability space, T > 0 and (Ft)t∈[0,T ],

(F̃t)t∈[0,T ] be two filtrations of F .

2.1 Notation and basic concepts

We recall that the extended non-negative real line [0, ∞] is completely metrizable in such
a way that the resulting trace topology of R+ agrees with the topology on R+ induced by
the absolute value function. For instance, take the metric given by

d∞(x, y) = |f∞(x) − f∞(y)|

for any x, y ∈ [0, ∞] with the strictly increasing homeomorphism f∞ : R+ → [0, 1[ given
by f∞(x) := x/(1 + x) that satisfies f∞(∞) = 1, where we set f(∞) := limx↑∞ f(x) for
any real-valued monotone function f defined on some interval. We shall use the induced
topology of d∞ in Sections 2.2 and 2.3.

For p ∈ [1, ∞[ let L p(R) denote the linear space of all real-valued Borel measurable
p-fold Lebesgue integrable functions on [0, T ] and L p(R+) stand for the convex cone of all
R+-valued functions in L p(R). For the Banach space of all real-valued càdlàg functions
on [0, T ], endowed with the supremum norm, we use the standard notation D([0, T ]).

Let S and S̃ be the linear spaces of all (real-valued) processes that are adapted
to (Ft)t∈[0,T ] and (F̃t)t∈[0,T ], respectively, which will be used extensively in Section 3.
Further, a real-valued function u on [0, T ] ×R×]0, ∞[ will be called right-continuous if for
each (s, x, v) ∈ [0, T ] × R×]0, ∞[ and any ε > 0 there is δ > 0 such that

|u(s, x, v) − u(t, y, w)| < ε

for all (t, y, w) ∈ [s, T ] × R×]0, ∞[ with |s − t| + |x − y| + |v − w| < δ. This notion of
right-continuity in time and continuity in space from Definition 2.1 in [25] will be used for
the right-hand Feller property of a diffusion in Section 4.

2.2 Representations of conditional expectations

In this section let T be a non-empty finite set of [0, T ] ∪ {∞}-valued random variables.
Each τ ∈ T defines the smallest filtration (H τ

t )t∈[0,T ] under which it becomes a stopping
time. Namely,

H
τ

t = σ
(

1{τ≤s} : s ∈ [0, t]
)

for all t ∈ [0, T ]. (2.1)

By setting Ht :=
∨

τ∈T H τ
t for any t ∈ [0, T ], we obtain the smallest filtration under

which any τ ∈ T is a stopping time. Then the (Ht)t∈[0,T ]-stopping time ρ := minτ∈T τ

gives rise to the filtration (FT
t )t∈[0,T ] defined via

F
T
t :=

{

Ã ∈ F | ∃A ∈ Ft : {ρ > t} ∩ A = {ρ > t} ∩ Ã
}

,

which satisfies Ft ∨ Ht ⊂ FT
t for any t ∈ [0, T ]. These concepts generalise the framework

in [6][Section 5.1.1] and yield an essential relation between conditional expectations, given
another filtration (F̃t)t∈[0,T ] such that Ft ⊂ F̃t ⊂ Ft ∨ Ht for all t ∈ [0, T ].

Lemma 2.1. Any [0, ∞]-valued random variable X satisfies

E[X1{ρ>t}|F̃s]P (ρ > s|Fs) = E[X1{ρ>t}|Fs]P (ρ > s|F̃s) a.s.

for all s, t ∈ [0, T ] with s ≤ t.
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We notice that any decreasing sequence (At)t∈[0,T ] in F satisfies P (As|Fs) ≥ P (At|Fs)
= E[P (At|Ft)|Fs] a.s. for all s, t ∈ [0, T ] with s ≤ t. In particular, for every random
variable τ with values in [0, T ] ∪ {∞} we have

P (τ > t|Ft) = Gt(τ) a.s. for any t ∈ [0, T ] (2.2)

and some [0, 1]-valued (Ft)t∈[0,T ]-supermartingale G(τ), which is called an survival process
of τ relative to this filtration, unique up to a modification. This fact allows us to identify
random variables before ρ occurs.

Corollary 2.2. For t ∈ [0, T ] let X and X̃ be two R+-valued random variables that are
measurable relative to Ft and F̃t, respectively. Then X = X̃ a.s. on {ρ > t} if and only
if

XGt(ρ) = E[X̃1{ρ>t}|Ft] a.s. (2.3)

In this case, X is a.s. uniquely determined as soon as Gt(ρ) > 0 a.s.

Now we rewrite a conditional expectation of a stopped integral by means of the survival
process G(ρ).

Lemma 2.3. Let s ∈ [0, T ] and G(ρ) be measurable. If X and X̃ are two [0, ∞]-valued
measurable processes such that Xt is Ft-measurable and Xt = X̃t a.s. on {ρ > t} for all
t ∈ [s, T ], then

E

[
∫ T ∧ρ

s
X̃t dt

∣

∣

∣

∣

Fs

]

= E

[
∫ T

s
XtGt(ρ) dt

∣

∣

∣

∣

Fs

]

a.s.

To consider conditional expectations of processes combined with stopping times, we
require a general concept of conditional independence.

Definition 2.4. Let m ∈ N and τ1, . . . , τm be [0, T ]∪{∞}-valued random variables. Then
τ1, . . . , τm are called (Ft)t∈[0,T ]-conditionally independent if

P (τ1 > s1, . . . , τm > sm|Ft) = P (τ1 > s1|Ft) · · · P (τm > sm|Ft) a.s.

for each t ∈ [0, T ] and any s1, . . . , sm ∈ [0, t].

As [0, T ]∪{∞} is closed in the Polish space [0, ∞], any random variable τ taking all its
values there admits a regular conditional probability K given Ft, where t ∈ [0, T ]. That
is, K is a Markovian kernel from (Ω, Ft) to [0, T ] ∪ {∞} such that

P (τ ∈ B|Ft) = K(·, B) a.s. for any B ∈ B([0, T ] ∪ {∞}).

In consequence, if two [0, T ] ∪ {∞}-valued random variables are (Ft)t∈[0,T ]-conditionally
independent, then their joint conditional distribution with respect to Ft is completely
determined up to time t in the following sense.

Lemma 2.5. Let σ, τ be two [0, T ] ∪ {∞}-valued (Ft)t∈[0,T ]-conditionally independent
random variables and t ∈ [0, T ]. Then

P ((σ, τ) ∈ C|Ft)(ω) = K(ω, ·) ⊗ L(ω, ·)(C) for P -a.e. ω ∈ Ω, (2.4)

all C ∈ B(([0, t] ∪ {∞})2) and any two respective regular conditional probabilities K and
L of σ and τ given Ft.

We conclude with the following integral representation within conditional expectations,
which extends Proposition 5.11 in [6].
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Proposition 2.6. Let s ∈ [0, T [ and σ, τ ∈ T . Assume that X̃ ∈ S̃ admits bounded
left-continuous paths such that the following three conditions hold:

(i) G(σ) is right-continuous and of finite variation and σ, τ are (Ft)t∈[0,T ]-conditionally
independent.

(ii) There exists an (Ft)t∈[0,T ]-progressively measurable process X with bounded paths

satisfying Xt = X̃t a.s. on {t < σ ≤ T } for each t ∈]s, T ].

(iii) The paths G(τ)(ω) and X(ω) are left-continuous except at countably many points,
excluding any discontinuity point of G(σ)(ω), for each ω ∈ Ω.

If supt∈]s,T ] |X̃t|1{s<σ≤T ∧τ} and supt∈]s,T ] |Xt|Gt(τ)(VT (σ) − Vs(σ)) are integrable, where
V (σ) is the variation process of G(σ), then

E[X̃σ
T1{s<σ≤T ∧τ}|Fs] = −E

[
∫

]s,T ]
XtGt(τ) dGt(σ)

∣

∣

∣

∣

Fs

]

a.s.

2.3 Construction of conditionally independent hitting times

For given m ∈ N let X be an [0, ∞]m-valued (Ft)t∈[0,T ]-adapted right-continuous process

and ξ be an R
m
+ -valued F̃0-measurable random vector that is independent of FT such

that ξ1, . . . , ξm are independent.
We assume that the i-th coordinate process of X, denoted by X(i), is increasing, let

Gi be the survival function of ξi and define a function τi on Ω with values in [0, T ] ∪ {∞}
via

τi := inf{t ∈ [0, T ] | X
(i)
t ≥ ξi}

for any i ∈ {1, . . . , m}. Then the hitting time τi does not need to be an (Ft)t∈[0,T ]-stopping
time, as ξi may fail to be F0-measurable. However, the following facts hold.

Lemma 2.7. The functions τ1, . . . , τm are (F̃t)t∈[0,T ]-stopping times that are conditionally

independent relative to (Ft)t∈[0,T ] such that {τj > t} = {X
(j)
t < ξj} and

P (τ1 > s1, . . . , τj > sj|Ft) = G1(X(1)
s1

) · · · Gj(X(j)
sj

) a.s.

for any j ∈ {1, . . . , m}, each t ∈ [0, T ] and every s1, . . . , sj ∈ [0, t].

As a direct consequence, ρ := mini∈{1,...,m} τi is an (F̃t)t∈[0,T ]-stopping time and each
(Ft)t∈[0,T ]-survival process G(ρ) of ρ satisfies

Gs(ρ) = P (ρ > s|Ft) = G1(X(1)
s ) · · · Gm(X(m)

s ) a.s. (2.5)

for any s, t ∈ [0, T ] with s ≤ t. Further relevant properties may be inferred by using
a ∈ R

m
+ and b ∈ [0, ∞]m defined coordinatewise via ai := ess inf ξi and bi := ess sup ξi.

Lemma 2.8. For each s ∈ [0, T ] the following three assertions hold:

(i) Gs(ρ) > 0 a.s. ⇔ X
(i)
s < bi a.s. for all i ∈ {1, . . . , m}.

(ii) ρ ≤ s a.s. ⇔ X
(i)
s ≥ bi for some i ∈ {1, . . . , m} a.s. Similarly,

ρ > s a.s. ⇔ X(i)
s ≤ ai a.s., if ξi > ai a.s.,

and X
(i)
s < ai a.s., if P (ξi = ai) > 0, for any i ∈ {1, . . . , m}.

(iii) ρ 6= s a.s. whenever s > 0, X is a.s. continuous and G1, . . . , Gm are continuous.
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Example 2.9. Let x̂ ∈ R
m
+ and λ be an [0, ∞]m-valued process that is progressively

measurable relative to (Ft)t∈[0,T ] such that

Xt = x̂ +

∫ t

0
λs ds for all t ∈ [0, T ]. (2.6)

Then X is left-continuous, by monotone convergence, and the assumed right-continuity of
X holds if and only if for every ω ∈ Ω there is tω ∈]0, T ] such that

m
∑

i=1

∫ tω

0
λ(i)

s (ω) ds < ∞.

In addition, Lemma 2.8 entails the following three statements:

(1) Assume that bi = ∞ for all i ∈ {1, . . . , m}. Then Gs(ρ) > 0 a.s. for any s ∈ [0, T ] if
and only if λ admits a.s. (Lebesgue) integrable paths, and

ρ < ∞ a.s. ⇔
m
∑

i=1

∫ T

0
λ

(i)
t dt = ∞ a.s.

(2) If x̂i ≥ ai for any i ∈ {1, . . . , m} and the event of all ω ∈ Ω with
∫ tω

0 λ
(i)
s (ω) ds > 0

for all i ∈ {1, . . . , m} has positive probability, then P (ρ > s) < 1 for any s ∈]0, T ].

(3) ρ 6= 0 a.s. ⇔ For each i ∈ {1, . . . , m} we have x̂i ≤ ai with equality if and only if
ξi > ai a.s. Further, ρ 6= s a.s. for all s ∈]0, T ] if G1, . . . , Gm are continuous.

Note that if X
(i)
0 ≥ ai a.s. for some i ∈ {1, . . . , m} and ξi is a.s. constant, which is

equivalent to the condition that ai = bi, then ρ = 0 a.s., since P (ρ > 0) ≤ Gi(bi) = 0. For
this reason, let us now assume that ai < bi for all i ∈ {1, . . . , m}.

We define an event in Ft by Λt :=
⋂m

i=1{X
(i)
t < bi} for each t ∈ [0, T ]. While {ρ > t}

is included in Λt, we have P (ρ > t) > 0 if and only if P (Λt) > 0, by Lemmas 2.7 and 2.8.
Based on these considerations, we provide a formula for the survival function of ρ.

Proposition 2.10. Let x̂ ∈ R
m
+ and λ be some [0, ∞]m-valued (Ft)t∈[0,T ]-progressively

measurable process satisfying (2.6) such that for each ω ∈ Ω we have

0 <

∫ tω

0
λ(i)

s (ω) ds < ∞ for all i ∈ {1, . . . , m} and some tω ∈]0, T ]. (2.7)

If x̂i ∈ [ai, bi[ and Gi is continuously differentiable on ]ai, bi[ for any i ∈ {1, . . . , m}, then

P (ρ > t) = G1(x̂1) · · · Gm(x̂m)P (Λt)

+

∫ t

0
E

[

G1(X(1)
s ) · · · Gm(X(m)

s )
m
∑

i=1

λ(i)
s

(

G′
i

Gi

)

(X(i)
s ); Λt

]

ds

for every t ∈ [0, T ].

Remark 2.11. The pathwise stated condition (2.7) is satisfied if and only if for any ω ∈ Ω
there are tω ∈]0, T ] and sω ∈]0, tω] such that

λ(ω) > 0 a.e. on ]0, sω[ and λ(ω) is integrable on [0, tω].

For instance, this is the case is if λ is ]0, ∞[m-valued and admits integrable paths.

To conclude our analysis, let us impose the gamma distribution on ξ1, . . . , ξm. This
includes the hitting times considered in [12] as special case, by choosing an exponential
distribution with mean one.
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Example 2.12. For each i ∈ {1, . . . , m} let ξi be gamma distributed with shape αi > 0
and rate βi > 0. That is, its survival function and the gamma function Γ satisfy

Gi(x) =
βαi

i

Γ(αi)

∫ ∞

x
yαi−1e−βiy dy for all x ∈ R+.

We suppose that λ is an [0, ∞]m-valued (Ft)t∈[0,T ]-progressively measurable process such

that Xt =
∫ t

0 λs ds for all t ∈ [0, T ] and (2.7) holds. Then the formula (2.5) yields that

P (ρ > s|Ft) =
γ(α1, β1X

(1)
s )

Γ(α1)
· · · γ(αm, βmX

(m)
s )

Γ(αm)
a.s.

for any s, t ∈ [0, T ] with s ≤ t, where γ :]0, ∞[2→]0, ∞[, γ(α, x) :=
∫∞

x yα−1e−y dy is the
upper incomplete gamma function. From Example 2.9 we in particular infer that

P (ρ > s) < 1 for all s ∈]0, T ] and ρ 6= s a.s. for any s ∈ [0, T ].

Moreover, if λ admits integrable paths, then P (ρ = ∞) > 0 and Proposition 2.10 entails
that the distribution of ρ decomposes into its continuous and discrete part. Namely,

P (ρ ∈ B) =

∫

B∩[0,T ]
ϕρ(s) ds +

(

1 −
∫ T

0
ϕρ(s) ds

)

δ∞(B)

for any B ∈ B([0, T ] ∪ {∞}) with the measurable integrable function ϕρ : [0, T ] → [0, ∞]
given by

ϕρ(s) := E

[

γ(α1, β1X
(1)
s )

Γ(α1)
· · · γ(αm, βmX

(m)
s )

Γ(αm)

m
∑

i=1

λ(i)
s

βαi

i (X
(i)
s )αi−1

γ(αi, βiX
(i)
s )

e−βiX
(i)
s

]

.

3 A financial market model with default

We aim to evaluate a derivative contract between an investor I and a counterparty C,
both considered as financial entities, with a special focus on the case that I stands for an
investment bank B.

3.1 Model specifications

In the sequel, we interpret the two filtrations (Ft)t∈[0,T ] and (F̃t)t∈[0,T ] as the temporal
developments of the default-free information and the whole available information on an
underlying financial market, respectively.

We use two [0, T ] ∪ {∞}-valued random variables τI and τC to model the respective
default times of the investor I and the counterparty C. Then τ := τI ∧ τC stands for the
time of a party to default first. By using the notation in (2.1), we require that

Ft ⊂ F̃t ⊂ Ft ∨ H
τI

t ∨ H
τC

t for all t ∈ [0, T ]. (3.1)

Thus, the available market information could yield no knowledge about the first time of
default and it may fail to give any insight into the respective default times of I and C.

In our continuous-time setting we assume that the distributions of τI and τC admit at
most one atom, which is at infinity, and both parties cannot default simultaneously. That
is, for any t ∈ [0, T ] we have

P (τI = t) = P (τC = t) = 0 and P (τI = τC , τ < ∞) = 0. (3.2)

The first condition implies that τ 6= t a.s. for all t ∈ [0, T ]. However, as {τI = τC = ∞}
= {τ = ∞} and we have made no restrictions on P̃ (τI = ∞) and P̃ (τC = ∞), both entities
may not default at all. So, we allow for P̃ (τ = ∞) ∈ [0, 1].
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Remark 3.1. The event {τI = τC, τ < ∞} of simultaneous default is a null set if τI and
τC are (Ft)t∈[0,T ]-conditionally independent under P̃ . Indeed, in this case Lemma 2.5 gives

P̃ (τI = τC , τ < ∞) = P̃ ((τI , τC) ∈ ∆) = Ẽ

[
∫

[0,T ]
K(·, {t}) L(·, dt)

]

= 0 (3.3)

for any two respective regular conditional probabilities K and L of τI and τC under P̃
given FT , where ∆ := {(s, t) ∈ [0, T ]2 | s = t}. Thereby, we note that

K(ω, {t}) = 0 for all (ω, t) ∈ N c × [0, T ]

and some null set N ∈ FT , since P̃ (τI = t|Ft) = 0 a.s. for all t ∈ [0, T ] and B([0, T ]∪{∞})
is countably generated. This justifies that the expectation in (3.3) vanishes.

Next, for any (Ft)t∈[0,T ]-progressively measurable process γ with integrable paths we
introduce an ]0, ∞[-valued function D(γ) on [0, T ]2 × Ω by

Ds,t(γ) := exp

(

−
∫ t

s
γs̃ ds̃

)

, if s ≤ t,

and Ds,t(γ) := 1, otherwise. Then the function [0, T ]2 →]0, ∞[, (s, t) 7→ Ds,t(γ)(ω) is
continuous for any ω ∈ Ω and Ds,t(γ) is Ft-measurable for all s, t ∈ [0, T ]. Moreover,
D(γ) is bounded as soon as γ is bounded from below.

Let r be an (Ft)t∈[0,T ]-progressively measurable process with integrable paths that
represents the instantaneous risk-free interest rate. Then Ds,t(r) is the discount factor
from time s ∈ [0, T ] to t ∈ [s, T ]. Put differently, Ds,t(r) specifies the required amount to
invest risk-free at time s, in order to receive 1 unit of cash at time t.

We let P̃ be a local martingale measure after a time t0 ∈ [0, T ] in the sense that any
discounted price process of a traded non-dividend-paying risky asset is an (F̃t)t∈[t0,T ]-local

martingale. That is, there is a non-empty set of processes Ũ ∈ S̃ , representing the price
processes of all such assets, for which [t0, T ] × Ω → R, (t, ω) 7→ D0,t(r)(ω)Ũt(ω) is an
(F̃t)t∈[t0,T ]-local martingale under P̃ . At all times, P̃ is ought to be equivalent to P .

Given the available market information, we will derive an equation for the value process,
denoted by Ṽ ∈ S̃ , of a trading strategy that hedges the contract between I and C under
P̃ that leads to no arbitrage.

In the end, however, we seek a valuation that does not involve any knowledge of the
default of any of the two parties, and the valuation equation for Ṽ includes quantities that
merely depend on its pre-default part in the following sense.

As introduced in (2.2), let G(σ) be an (Ft)t∈[0,T ]-survival process under P̃ of a random
variable σ with values in [0, T ]∪{∞}, which is an [0, 1]-valued (Ft)t∈[0,T ]-supermartingale

under P̃ such that

P̃ (σ > t|Ft) = Gt(σ) a.s. for all t ∈ [0, T ].

Let us call a process X̃ integrable up to time τ if [0, T ] × Ω → R, (t, ω) 7→ X̃t(ω)1{τ>t}(ω)

is integrable. By Corollary 2.2, this property is satisfied by X̃ ∈ S̃ if and only if there is
X ∈ S such that XG(τ) is integrable and Xs = X̃s a.s. on {τ > s} for each s ∈ [0, T ]. In
this case,

XsGs(τ) = Ẽ[X̃s1{τ>s}|Fs] a.s. for all s ∈ [0, T ] (3.4)

and we shall call X a pre-default version of X̃. If in addition Gs(τ) > 0 a.s. for every
s ∈ [0, T ], which implies that the probability that neither I nor C defaults at any time is
positive, then X is unique up to a modification.

In this spirit, we will introduce valuation based on default-free information only and
analyse any pre-default value process V defined as pre-default version of Ṽ , which in turn
should be integrable up to time τ .
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Remark 3.2. Any (Ft)t∈[t0,T ]-martingale X under P̃ , in the local or standard sense, also

satisfies the respective (F̃t)t∈[t0,T ]-martingale property if for both i ∈ {I, C} we have

Gs(τi) = P̃ (τi > s|Ft) a.s. for any s, t ∈ [0, T ] with s ≤ t (3.5)

and τI , τC are (Ft)t∈[0,T ]-conditionally independent under P̃ . Due to Lemma 2.7, these
conditions are met in Example 3.9, which we will consider after analysing the model.

3.2 Incorporation of all relevant cash flows, costs and benefits

Let us summarise all cash flows, costs and benefits that may impact the value of the
contract between I and C. These quantities are the contractual derivative cash flows (3.6),
the costs and benefits of a collateral account (3.7), the funding costs and benefits (3.8), the
repo costs and benefits associated to the hedging account (3.9) and the cash flows arising
on the default of one of the two parties (3.10).

Despite the contractual cash flows, all remaining quantities are allowed to depend on
the value process Ṽ or its pre-default version V . For a mathematical description we define
a time-dependent random functional on a set D in S̃ to be a function

F : [0, T ] × Ω × D → R, (t, ω, X) 7→ Ft(X)(ω)

for which F (X) : [0, T ] × Ω → R, (t, ω) 7→ Ft(X)(ω) is a process for every X ∈ D . If there
is a filtration (Gt)t∈[0,T ] of F to which F (X) is adapted for all X ∈ D , then we will refer
to an (Gt)t∈[0,T ]-time-dependent random functional.

(1) The contractual derivative cash flows with C are supposed to depend on a payoff
functional and a dividend-paying risky asset that is influenced by its variance, or
squared volatility, in an extended sense.

- The price of the risky asset, its quasi variance and its instantaneous dividend rate are
modelled by two R+-valued càdlàg processes S and V in S and some process π that
is (Ft)t∈[0,T ]-progressively measurable and admits integrable paths, respectively.

- The R+-valued Borel measurable functional Φ defined on the closed set of all paths
in D([0, T ]) × D([0, T ]) with non-negative entries represents the payoff functional.

- The contractual cash flows consist of the amount Φ(S, V ) paid at maturity and
dividends according to the rate π. The continuous process conCF representing the
discounted future cash flows at any time point is given by

conCFs := Ds,T (r)Φ(S, V )1{τ>T } +

∫ T ∧τ

s
Ds,t(r)πt dt. (3.6)

(2) The costs and benefits of a collateral account arising from the collateralisation
procedure to mitigate the default risk, subject to the collateral remuneration rate.

- Namely, the collateral serves as guarantee in case of default and the party receiving
it will have to remunerate it at a certain interest rate, called the collateral rate,
determined by the contract. We assume that the assets received as collateral can be
re-hypotecated and do not have to be kept segregated.

- For an (Ft)t∈[0,T ]-time-dependent random functional C on S the process C(V ),
required to be càglàd, models the cash flows of the collateral procedure.

- The collateral rates of each party are represented by two (Ft)t∈[0,T ]-progressively
measurable processes +c and −c with integrable paths, respectively.
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- So, I is a collateral receiver remunerating the assets at the rate +ct on {Ct(V ) > 0}
and a collateral provider investing at the rate −ct on {Ct(V ) < 0} for all t ∈ [0, T ].

- By means of the (Ft)t∈[0,T ]-time-dependent random functional c on S given by

ct(X) := +ct1]0,∞[

(

Ct(X)
)

+ −ct1]−∞,0[

(

Ct(X)
)

,

the process c(V ) represents the respective collateral rate.

- We define a time-dependent random functional colC on the set of all X ∈ S for
which C(X) is càglàd by

colCs(X) :=

∫ T ∧τ

s
Ds,t(r)(ct(X) − rt)Ct(X) dt. (3.7)

Then the continuous process colC(V ) stands for the time evolution of the discounted
future collateral costs and benefits.

(3) The costs and benefits of a funding account that may accrue, as I is supposed
to have access to an account for borrowing or investing money at two respective
risk-free interest rates.

- Given an (F̃t)t∈[0,T ]-time-dependent random functional F̃ on S̃ , the process F̃ (Ṽ ),
supposed to be càglàd, stands for the funding amount.

- The interest rates for borrowing and lending are given by the (F̃t)t∈[0,T ]-progressively

measurable processes +f̃ and −f̃ with integrable paths, respectively.

- Hence, I is borrowing the amount F̃t(Ṽ ) at the interest rate +f̃t on {F̃t(Ṽ ) > 0}
and she is lending −F̃t(Ṽ ) at the rate −f̃t on {F̃t(Ṽ ) < 0} for all t ∈ [0, T ].

- By using the (F̃t)t∈[0,T ]-time-dependent random functional f̃ on S̃ defined via

f̃t(X̃) := +f̃t1]0,∞[

(

F̃t(X̃)
)

+ −f̃t1]−∞,0[

(

F̃t(X̃)
)

,

the process f̃(Ṽ ) yields the respective funding rate.

- We introduce a time-dependent random functional funC on the set of all X̃ ∈ S̃ for
which F̃ (X̃) is càglàd by

funCs(X̃) :=

∫ T ∧τ

s
Ds,t(r)(f̃t(X̃) − rt)F̃t(X̃) dt. (3.8)

Then the continuous process funC(Ṽ ) represents the temporal development of the
present value of the funding costs and benefits.

(4) As I may be a bank B, we assume that she may enter repurchase agreements to hedge
its exposure. For this reason, the repo costs and the benefits that result from

hedging the derivative should be taken into account.

- For an (F̃t)t∈[0,T ]-time-dependent random functional H̃ on S̃ the process H̃(Ṽ ),
assumed to be càglàd, measures the value of the risky asset position that I has via
the repo.

- The two repo rates are given by (F̃t)t∈[0,T ]-progressively measurable processes +h̃

and −h̃ with integrable paths.
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- Thus, I borrows a risky asset with the repo rate +h̃t on {H̃t(Ṽ ) > 0} and lends a
risky asset with the rate −h̃t on {H̃t(Ṽ ) < 0} for each t ∈ [0, T ].

- We let the (F̃t)t∈[0,T ]-time-dependent random functional h̃ on S̃ be given by

h̃t(X̃) := +h̃t1]0,∞[

(

H̃t(X̃)
)

+ −h̃t1]−∞,0[

(

H̃t(X̃)
)

,

which yields h̃(Ṽ ) as respective repo rate.

- Thereby, we suppose that I continuously rolls over repo contracts and that at each
point t ∈ [0, T ] she receives in the repo the exact value of the assets she is lending.
Thus, the gain of the repo position is given by the growth of the assets that are being
repoed minus h̃t(Ṽ )(−H̃t(Ṽ )), the repo rate times the amount of cash received.

- In this context, let the time-dependent random functional hedC on the set of all
X̃ ∈ S̃ for which H̃(X̃) is càglàd be defined via

hedCs(X̃) :=

∫ T ∧τ

s
Ds,t(r)

(

rt − h̃t(X̃)
)

H̃t(X̃) dt. (3.9)

Then the continuous process hedC(Ṽ ) stands for the present value development of
the hedging costs and benefits.

(5) The cash flows arising on the default of one of the two parties that can
be computed with the residual value of the claim, the net exposure, the losses given
default and the funding amount.

- For an (Ft)t∈[0,T ]-time-dependent random functional ε on S the process ε(V ), which
is ought to be càglàd, models the time evolution of the close-out value.

- We interpret ετ (V ) as the residual value of the claim at the time τ of a party to
default first on {τ < ∞}, since τI 6= τC a.s. on this event.

- On {τI > τC} we specify that if the net exposure (ετ − Cτ )(V ) at the time of default
is non-positive, then I is a net debtor and repays ετ (V ) to C.

- If instead (ετ −Cτ )(V ) > 0, then I is a net creditor and recovers a fraction 1−LGDI

of its credits, in which case it receives Cτ (V ) + (1 − LGDC)(ετ − Cτ )(V ).

- We implicitly assume that the loss fractions LGDI , LGDC ∈ [0, 1], which denote the
losses given defaults of I and C, respectively, are deterministic exogenous quantities.

- The case in which I is a bank and defaults before C is symmetrical. If, however,
I 6= B, then merely ετ (V ) is being considered on {τI < τC}.

- We define a time-dependent random functional def,cCF on the set of all X ∈ S for
which ε(X) and C(X) are càglàd via

def,cCFs(X) := Ds,τ (r)
(

ετ (X) − LGDC(ετ − Cτ )+(X)1{τI >τC}

)

+ Ds,τ (r)LGDI(ετ − Cτ )−(X)1{I=B, τI<τC}

on {s < τ < T } and def,cCFs(X) := 0 on the complement of this set. Then, according
to our reasoning, the discounted future cash flows on default due to the contract can
be modelled by the càdlàg process def,cCF(V ).

- As we suppose that if I is a bank and has a cash surplus, then it may invest into
risk-free assets, we also consider the cash flows on the bank’s default due to funding.
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- To this end, let the time-dependent random functional def,fCF on the set of all
X̃ ∈ S̃ for which F̃ (X̃) is càglàd be given by

def,fCFs(X̃) := Ds,τ (r)LGDIF̃ +
τ (X̃)1{I=B, τI<τC}

on {s < τ < T } and def,fCFs(X̃) := 0 on its complement. Then the càdlàg process

def,fCF(Ṽ ) yields the time evolution of the corresponding net present value.

- Finally, for every (X, X̃) ∈ S × S̃ for which C(X), ε(X) and F̃ (X̃) are càglàd we
set

defCFs(X, X̃) := def,cCFs(X) + def,fCFs(X̃). (3.10)

Then the process defCF(V , Ṽ ) sums up both sources of default risk.

3.3 The pre-default valuation equation

For the valuation of the derivative contract let us first ensure the integrability of the net
present values of all the cash flows, costs and benefits generally given by (3.6)-(3.10).
Throughout this section, (Ω, F , P̃ ) serves as underlying probability space.

Let L̃ (r, τ) be the linear space of all random variables X for which Ds,T (r)|X|1{τ>T } is

P̃ -integrable for any s ∈ [0, T ] and S̃ (r, τ) be the linear space of all measurable processes
X satisfying

Ẽ

[
∫ T ∧τ

s
Ds,t(r)|Xt| dt

]

< ∞ for all s ∈ [0, T [.

Furthermore, by D̃(r, τ) we denote the linear space of all càglàd processes X such that
supt∈]s,T [ Ds,t(r)|Xt|1{s<τ<T } is P̃ -integrable for each s ∈ [0, T [ and we set

L̃ (r) := L̃ (r, ∞) and S̃ (r) := S̃ (r, ∞).

Remark 3.3. For any two R+-valued random variables X and X̃ that are measurable
with respect to FT and F̃T such that X = X̃ a.s. on {τ > T } Corollary 2.2 implies

Ẽ
[

Ds,T (r)X̃1{τ>T }

]

= Ẽ
[

Ds,T (r)XGT (τ)
]

for any s ∈ [0, T ].

Thus, X̃ ∈ L̃ (r, τ) ⇔ XGT (τ) ∈ L̃ (r). Further, if G(τ) is measurable and now X and X̃
denote two R+-valued processes that are progressively measurable relative to (Ft)t∈[0,T ]

and (F̃t)t∈[0,T ], respectively, then

Ẽ

[
∫ T ∧τ

s
Ds,t(r)X̃t dt

]

= Ẽ

[
∫ T

s
Ds,t(r)XtGt(τ) dt

]

as soon as Xt = X̃t a.s. on {τ > t} for all t ∈ [0, T ], according to Lemma 2.3. This in turn
shows that X̃ ∈ S̃ (r, τ) ⇔ XG(τ) ∈ S̃ (r).

Based on our definitions, the process conCF given by (3.6) that models the discounted
contractual derivative cash flows is integrable if our first model assumption holds:

(M.1) The amount Φ(S, V ) paid at maturity and the dividend rate π lie in L̃ (r, τ) and
S̃ (r, τ), respectively.

By Remark 3.3, if G(τ) were measurable, then, equivalently, we could have asked for
Φ(S, V )GT (τ) ∈ L̃ (r) and πG(τ) ∈ S̃ (r). To consider the remaining quantities, let
Ṽ ∈ S̃ be integrable up to time τ and V be a pre-default version of it.
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We suppose that the collateral process, the funding amount, the hedging process and
the close-out value possess càglàd paths or in short,

C(V ), F̃ (Ṽ ), H̃(Ṽ ) and ε(V ) are càglàd. (3.11)

Then the processes colC(V ), funC(Ṽ ) and hedC(Ṽ ), introduced in (3.7)-(3.9), that model
the collateral, funding and hedging costs and benefits, respectively, are integrable if

(c(V ) − r)C(V ), (f̃(Ṽ ) − r)F̃ (Ṽ ), (r − h̃(Ṽ ))H̃(Ṽ ) lie in S̃ (r, τ). (3.12)

For the integrability of defCF(V , Ṽ ), given by (3.10) and modelling the cash flows on
the default of one of the two parties, it suffices that the respective cash flows appearing
on the default of I and C are elements of D̃(r, τ). Namely,

(ε(V ) + LGDI((ε − C)−(V ) + F̃ +(Ṽ ))1{I=B})1{τI<τC}

and (ε − LGDC(ε − C)+)(V )1{τI>τC} belong to D̃(r, τ).
(3.13)

In fact, as condition (3.2) states that τI 6= τC a.s. on {τ < ∞}, we readily check that the
random variable |defCFs(V , Ṽ )| is bounded by

sup
t∈]s,T [

Ds,t(r)|εt(V ) + LGDI((εt − Ct)
−(V ) + F̃ +

t (Ṽ ))1{I=B}|1{τI<τC}

+ sup
t∈]s,T [

Ds,t(r)|εt − LGDC(εt − Ct)
+|(V )1{τI>τC}

a.s. on {s < τ < T } for all s ∈ [0, T [, which entails the asserted integrability. Let us now
suppose that (M.1) holds. For Ṽ to be the value process of a hedging strategy of the
contract under P̃ , we require that (3.11)-(3.13) be satisfied.

Further, we stipulate that Ṽs agrees with the conditional expectation of the sum of
the net present values of all cash flows, costs and benefits relative to the current available
market information under P̃ for each s ∈ [0, T ]. Namely,

Ṽs = Ẽ
[

conCFs − colCs(V ) − funCs(Ṽ ) − hedCs(Ṽ ) + defCFs(V , Ṽ )
∣

∣F̃s
]

a.s. (3.14)

for any s ∈ [0, T ] and from our considerations we infer that Ṽ is necessarily P̃ -integrable.
In particular, the terminal value condition ṼT = conCFT = Φ(S, V ) a.s. must hold.

This implicit conditional representation refines the valuation equation (1) in [12], which
is build on the valuation problems in [30] and [31]. As immediate consequence of (3.4),
the pre-default version V of the value process Ṽ satisfies

VsGs(τ) = Ẽ
[

conCFs − colCs(V )− funCs(Ṽ )− hedCs(Ṽ )+ defCFs(V , Ṽ )
∣

∣Fs
]

a.s. (3.15)

for all s ∈ [0, T ], as the quantities conCFs, colCs(V ), funCs(Ṽ ), hedCs(Ṽ ) and defCFs(V , Ṽ )
vanish on {τ ≤ s}. Thus, to derive a valuation equation for V restricted to default-free
information, we will replace the FT ∨ H

τI

T ∨ H
τC

T -measurable random variables

conCFs, colCs(V ), funCs(Ṽ ), hedCs(Ṽ ) and defCFs(V , Ṽ )

within the conditional expectation in (3.15) by FT -measurable ones that may merely
depend on V . For this purpose, we will use the probabilistic results from Section 2.2 and
require a set of model assumptions:

(M.2) G(τI) and G(τC) are continuous and of finite variation, τI and τC are conditionally
independent relative to (Ft)t∈[0,T ] under P̃ and G(τ) = G(τI)G(τC).
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(M.3) There are two (Ft)t∈[0,T ]-time-dependent random functionals F and H on S such

that F (X) and H(X) serve as pre-default versions of F̃ (X̃) and H̃(X̃), respectively,
for any X̃ ∈ S̃ that is integrable up to time τ with pre-default version X.

(M.4) The funding rates +f̃ , −f̃ and the hedging rates +h̃, −h̃ are integrable up to time
τ and admit (Ft)t∈[0,T ]-progressively measurable pre-default versions +f , −f and

+h, −h, respectively, with integrable paths.

Remark 3.4. The identity in (M.2) simply states that G(τ) and G(τI)G(τC) are not only
modifications of each other, but in fact equal. This ensures that all the paths of G(τ) are
continuous and of finite variation.

Under (M.3) and (M.4), we may define two time-dependent random functionals f and
h on S relative to (Ft)t∈[0,T ] by ft(X) := +ft1]0,∞[(Ft(X)) + −ft1]−∞,0[(Ft(X)) and

ht(X) := +ht1]0,∞[

(

Ht(X)
)

+ −ht1]−∞,0[

(

Ht(X)
)

.

Then f̃(X̃) and h̃(X̃) admit f(X) and h(X) as pre-default versions, respectively, for any
X̃ ∈ S̃ that is integrable up to time τ with pre-default version X. Further, f(X) and
h(X) are (Ft)t∈[0,T ]-progressively measurable if F (X) and H(X) are.

Now let the pre-default funding amount F (V ) and the pre-default hedging process
H(V ) be càglàd. In this case, (3.11) entails that the following path regularity condition
for the pre-default version V of Ṽ holds:

(C.1) C(V ), F (V ), H(V ) and ε(V ) are càglàd.

Let in addition (M.2) be satisfied. Then Remark 3.3 shows that (3.12) is valid if and
only if the following integrability condition is valid:

(C.2) The product of G(τ) with any of the processes (c(V ) − r)C(V ), (f(V ) − r)F (V )
and (r − h(V ))H(V ) belongs to S̃ (r).

To handle the conditional expectation of defCFs(V , Ṽ ) relative to Fs in (3.15) for any
s ∈ [0, T ], we need another integrability condition that involves the variation process V (τi)
of G(τi) for both i ∈ {I, C}. In this regard, we recall that V (τi) = 1 − G(τi) ∈ [0, 1] if
G(τi) is decreasing, as in Example 3.9 below.

(C.3) supt∈]s,T [ Ds,t(r)|εt +LGDI((εt −Ct)
− +F +

t )1{I=B}|(V )Gt(τC)(VT (τI)−Vs(τI)) and

sup
t∈]s,T [

Ds,t(r)|εt − LGDC(εt − Ct)
+|(V )Gt(τI)(VT (τC) − Vs(τC))

are P̃ -integrable for any s ∈ [0, T [.

For a clear and concise overview, let us summarise all appearing quantities by defining
three (Ft)t∈[0,T ]-time-dependent random functionals 0B, IB and CB on S via

0Bt(X) := πt − (ct(X) − rt)Ct(X) − (ft(X) − rt)Ft(X) − (rt − ht(X))Ht(X),

IBt(X) := εt(X) + LGDI((εt − Ct)
− + F +

t )(X)1{I=B} and

CBt(X) := εt(X) − LGDC(εt − Ct)
+(X).

(3.16)

Then 0B(X) is (Ft)t∈[0,T ]-progressively measurable for any X ∈ S as soon as C(X), F (X)

and H(X) are. Thus, (C.2) implies 0B(V )G(τ) ∈ S̃ (r). Further, IB(X) and CB(X) are
càglàd if C(X), F (X) and ε(X) are. In this case, the two Riemann-Stieltjes integrals

∫ T

s
Ds,t(r)|IBt(X)|Gt(τC) dVt(τI) and

∫ T

s
Ds,t(r)|CBt(X)|Gt(τI) dVt(τC)
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are finite for each s ∈ [0, T [, and for X = V each of these integrals is bounded by the
respective random variable in (C.3), which ensures their P̃ -integrability.

Consequently, we may introduce an (Ft)t∈[0,T ]-time-dependent random functional A
on the set of all X ∈ S for which C(X), F (X), H(X) and ε(X) are càglàd by

At(X) :=

∫ t

0
0Bs(X)Gs(τ) ds −

∫ t

0
IBs(X)Gs(τC) dGs(τI)

−
∫ t

0
CBs(X)Gs(τI) dGs(τC).

(3.17)

We readily see that A(X) is a continuous process of finite variation for each process X in
its domain and the Riemann-Stieltjes integral

∫ T
s Ds,t(r) dAt(V ) is P̃ -integrable for every

s ∈ [0, T ] if (C.2) and (C.3) are valid.
Based on all these measurability, path regularity and integrability considerations, we

may now rewrite the conditional expectations appearing in (3.15) as follows.

Proposition 3.5. Let (M.1)-(M.4) hold and Ṽ ∈ S̃ be integrable with pre-default version
V such that F̃ (Ṽ ), H̃(Ṽ ) are càglàd and (3.13) and (C.1)-(C.3) hold. Then

Ẽ
[

conCFs − colCs(V ) − funCs(Ṽ ) − hedCs(Ṽ ) + defCFs(V , Ṽ )
∣

∣Fs

]

= Ẽ

[

Ds,T (r)Φ(S, V )GT (τ) +

∫ T

s
Ds,t(r) dAt(V )

∣

∣

∣

∣

Fs

] (3.18)

a.s. for each s ∈ [0, T ].

This result leads us to a valuation equation involving default-free information only.
Namely, by a solution to the pre-default valuation equation

VsGs(τ) = Ẽ

[

Ds,T (r)Φ(S, V )GT (τ) +

∫ T

s
Ds,t(r) dAt(V )

∣

∣

∣

∣

Fs

]

a.s. (VE)

for s ∈ [t0, T ] we shall mean a process V ∈ S such that the path regularity condition (C.1)
and the two integrability conditions (C.2) and (C.3) hold and the almost sure identity
in (VE) is satisfied for each s ∈ [t0, T ].

In this case, VsGs(τ) is necessarily integrable and VT = Φ(S, V ) a.s. on {GT (τ) > 0}.
Thus, we obtain a martingale characterisation for any such pre-default value process.

Proposition 3.6. Assume that (M.1)-(M.4) are valid and V ∈ S satisfies (C.1)-(C.3).
Then the (Ft)t∈[0,T ]-adapted continuous process

[0, T ] × Ω → R, (t, ω) 7→
∫ t

0
D0,s(r)(ω) dAs(V )(ω) (3.19)

of finite variation is integrable. Moreover, V solves (VE) if and only if V M ∈ S defined
via

V Mt := D0,t(r)VtGt(τ) +

∫ t

0
D0,s(r) dAs(V ) (3.20)

is an (Ft)t∈[t0,T ]-martingale under P̃ and VT = Φ(S, V ) a.s. on {GT (τ) > 0}.

For an implicit backward stochastic integral representation of any pre-default value
process we assume until the end of this section that (Ω, F , (Ft)t∈[0,T ], P̃ ) satisfies the
usual conditions.
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Proposition 3.7. Let (M.1)-(M.4) be valid and (C.1)-(C.3) hold for V ∈ S . Then
V G(τ) is a continuous (Ft)t∈[t0,T ]-semimartingale if and only if V M is. In this case,

VsGs(τ) = VT GT (τ) +

∫ T

s

(

dAt(V ) − rtVtGt(τ) dt
)−

∫ T

s
D0,t(−r) dV Mt (3.21)

for any s ∈ [t0, T ] a.s. If in addition G(τ) > 0, then V M is, up to indistinguishability, the
unique continuous (Ft)t∈[t0,T ]-semimartingale satisfying

Vs = VT +

∫ T

s

(

0Bt(V ) − rtVt
)

dt −
∫ T

s

IBt(V ) − Vt

Gt(τI)
dGt(τI)

−
∫ T

s

CBt(V ) − Vt

Gt(τC)
dGt(τC) −

∫ T

s

D0,t(−r)

Gt(τ)
dV Mt

(3.22)

for all s ∈ [t0, T ] a.s. and V Mt1 = D0,t1(r)Vt1Gt1(τ) +
∫ t1

0 D0,t(r) dAt(V ) a.s. for some
t1 ∈ [t0, T ].

As a consequence of the preceding two results, we are able to characterise pre-default
value processes that are semimartingales.

Corollary 3.8. Let (M.1)-(M.4) hold, G(τ) > 0, V ∈ S be continuous and (C.1)-(C.3)
be valid. Then V is an (Ft)t∈[t0,T ]-semimartingale solving (VE) if and only if

D0,t0(r)Vt0Gt0(τ) is P̃ -integrable, VT = Φ(S, V ) a.s.

and there is a continuous (Ft)t∈[t0,T ]-martingale M that takes the role of V M in (3.22).
If this is the case, then Mt − Mt0 = V Mt − V Mt0 for all t ∈ [t0, T ] a.s.

In addition to our four model assumptions let G(τI) and G(τC) be not only continuous
and of finite variation but absolutely continuous and positive. Then the same holds for
G(τ) and any continuous V ∈ S satisfying (C.1)-(C.3) solves (VE) if and only if

Vs = Ẽ

[

Ds,T (r)Φ(S, V )
GT (τ)

Gs(τ)

∣

∣

∣

∣

Fs

]

+ Ẽ

[
∫ T

s
Ds,t(r)

Gt(τ)

Gs(τ)

(

Bt(V ) +

(

rt − Ġt(τ)

Gt(τ)

)

Vt

)

dt

∣

∣

∣

∣

Fs

]

(3.23)

for any s ∈ [t0, T ] with the (Ft)t∈[0,T ]-time-dependent random functional B defined on the
set of all continuous X ∈ S for which C(X), F (X), H(X) and ε(X) are càglàd by

Bt(X) := 0Bt(X) − rtXt − Ġt(τI)

Gt(τI)
(IBt(X) − Xt) − Ġt(τC)

Gt(τC)
(CBt(X) − Xt). (3.24)

Moreover, if V , or equivalently, V M is an (Ft)t∈[t0,T ]-semimartingale, then we may rewrite
the implicit backward stochastic integral representation (3.22) in the form

Vs = VT +

∫ T

s
Bt(V ) dt −

∫ T

s

D0,t(−r)

Gt(τ)
dV Mt for all s ∈ [t0, T ] a.s. (3.25)

Example 3.9. For both i ∈ {I, C} let λ(i) be an R+-valued (Ft)t∈[0,T ]-progressively
measurable process with integrable paths such that every ω ∈ Ω satisfies

∫ tω

0
λ(i)

s (ω) ds > 0 for some tω ∈]0, T ],

18



which holds if λ(i) > 0, for instance. Further, let ξi be an ]0, ∞[-valued F̃0-measurable
random variable that is gamma distributed with shape αi > 0 and rate βi > 0 such that

τi = inf

{

t ∈ [0, T ]

∣

∣

∣

∣

∫ t

0
λ(i)

s ds ≥ ξi

}

.

We suppose that (ξI , ξC) is independent of FT and ξI and ξC are independent. Then
Lemma 2.7 and Example 2.12 show that (3.2) and (M.2) hold for G(τ) = G(τI)G(τC) and
both G(τI) and G(τC) are absolutely continuous and positive. Moreover,

−Ġt(τi)

Gt(τi)
=

βαi

i λ
(i)
t

γ
(

αi, βi
∫ t

0 λ
(i)
s ds)

(
∫ t

0
λ(i)

s ds

)αi−1

exp

(

− βi

∫ t

0
λ(i)

s ds

)

for a.e. t ∈ [0, T ] for both i ∈ {I, C}, where γ is the upper incomplete gamma function,
and this formula this reduces to −Ġ(τi)/G(τi) = βiλ

(i) a.e. when αi = 1. Thus, in the
case αI = αC = 1 we have

Bt(X) = 0Bt(X) − rtXt +
(

βIλ
(I)
t + βCλ

(C)
t

)(

εt(X) − Xt
)

+ βIλ
(I)
t LGDI((εt − Ct)

− + F +
t )(X)1{I=B} − βCλ

(C)
t LGDC(εt − Ct)

+(X)

for a.e. t ∈ [0, T ] and any X ∈ S for which C(X), F (X), H(X) and ε(X) are càglàd.
In particular, if ξI and ξC are exponentially distributed with mean one and the financing
hypothesis

Xt = Ct(X) + Ft(X) for all (t, X) ∈ [0, T ] × S (3.26)

holds, then (3.23) and (3.25) yield the respective identities (5) and (6) for the pre-default
value process in [12], where (Ft)t∈[0,T ] is the augmented filtration of a standard Brownian
motion and the martingale representation theorem may be applied.

4 A parabolic equation for the pre-default valuation

4.1 A general stochastic volatility model

In the sequel, let the filtered probability space (Ω, F , (Ft)t∈[0,T ], P ) satisfy the usual

conditions and suppose that there are two standard (Ft)t∈[0,T ]-Brownian motions Ŵ and

W̃ with covariation

〈Ŵ , W̃ 〉t =

∫ t

0
ρ(s) ds for all t ∈ [0, T ] a.s,

where ρ : [0, T ] →] − 1, 1[ is a measurable function satisfying
∫ T

0 (1 − ρ(s)2)−1 ds < ∞. Let
b : [0, T ] → R and ζ, η, θ : [0, T ] ×R → R be measurable and consider the two-dimensional
SDE starting at time t0 ∈ [0, T ]:

dSt = b(t)St dt + θ(t, Vt)St dŴt,

dVt = ζ(t, Vt) dt + η(t, Vt) dW̃t

(4.1)

for t ∈ [t0, T ]. Given any weak solution (S, V ), we will interpret S as price process of the
risky asset and V as quasi variance or quasi squared volatility process influencing S via
the function θ, which will satisfy the 1/2-Hölder continuity condition in (V.2).

Under a weak integrability condition, the unique solution to the linear SDE in (4.1) is
readily recalled, by using stochastic exponentials for local martingales. For this purpose,
let V be an adapted continuous process with positive paths.
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(V.1) b is integrable and for any compact set K in ]0, ∞[ there is kθ ∈ L 2(R+) such that
|θ(·, v)| ≤ kθ for each v ∈ K a.e.

Lemma 4.1. Let (V.1) hold and χ be an Ft0-measurable random variable. Then the first
SDE in (4.1) admits a unique solution S such that St0 = χ a.s. In fact,

St = χe

∫ t

t0
θ(s,Vs) dŴs+

∫ t

t0
b(s)− 1

2
θ(s,Vs)2 ds

(4.2)

for any t ∈ [t0, T ] a.s. In particular, if χ and exp(1
2

∫ T
t0

θ(s, Vs)
2 ds) are integrable, then so

is S and E[St] = E[χ] exp(
∫ t

t0
b(s) ds) for all t ∈ [t0, T ].

In view of the preceding lemma, for any Ft0-measurable positive random variable χ,
there exists a unique solution S to the first SDE in (4.1) with positive paths such that
St0 = χ a.s. Then the logarithmised process X := log(S) satisfies

dXt =
(

b(t) − (1/2)θ(t, Vt)
2) dt + θ(t, Vt) dŴt for t ∈ [t0, T ] (4.3)

and it is the unique strong solution to (4.3) with Xt0 = log(χ) a.s. Growth and comparison
estimates for solutions to such SDEs with different controlling processes follow from a weak
integrability and a Hölder condition on the function θ:

(V.2) There are v0 > 0 and λθ ∈ L 2(R+) such that θ(·, v0) is square-integrable and
|θ(·, v) − θ(·, ṽ)| ≤ λθ|v − ṽ|1/2 for all v, ṽ > 0 a.e.

This requirement implies the sublinear growth condition: |θ(·, v)| ≤ kθ + λθ|v|1/2 for
any v > 0 a.e. with kθ := |θ(·, v0)| + λθ|v0|1/2. Thus, if Xt0 and b were integrable, then
the inequalities of Burkholder-Davis-Gundy, Minkowski and Young yield that

E

[

sup
s∈[t0,t]

|Xs|
]

− E
[|Xt0 |] ≤

∫ t

t0

|b(s)| +
1

2
E
[

θ(s, Vs)2] ds + 2

(
∫ t

t0

E
[

θ(s, Vs)
2] ds

)

1
2

≤ c0(t0, t) + c1(t0, t) sup
s∈[t0,t]

E
[

Vs
]

(4.4)

for any t ∈ [t0, T ] with the two R+-valued continuous functions c0 and c1 defined on the
set of all (t1, t) ∈ [0, T ] × [0, T ] with t1 ≤ t via

c0(t1, t) :=

∫ t

t1

|b(s)| + kθ(s)2 ds + 2

(
∫ t

t1

kθ(s)2 ds

)

1
2

+

(
∫ t

t1

λθ(s)2 ds

)

1
2

and c1(t1, t) :=

∫ t

t1

λθ(s)2 ds +

(
∫ t

t1

λθ(s)2 ds

)

1
2

.

If in addition the function [t0, T ] → [0, ∞], t 7→ E[Vt] is finite and bounded, then
supt∈[t0,T ] |Xt| is integrable, entailing that X is uniformly integrable. A similar approach
leads to the announced comparison bound.

Lemma 4.2. Let (V.2) hold and V , Ṽ be positive adapted continuous processes. Then any
two solutions X and X̃ to (4.3) with underlying processes V and Ṽ , respectively, satisfy

E

[

sup
s∈[t0,t]

|Xσ
s − X̃σ

s |
]

≤ E
[|Xt0 − X̃t0 |]

+ c2(t0, t) sup
s∈[t0,t]

(

1 + E
[

V σ
s

]

+ E
[

Ṽ σ
s

])

1
2 E
[|V σ

s − Ṽ σ
s |]

1
2

(4.5)

for all t ∈ [t0, T ] and each stopping time σ with σ ≥ t0, where the R+-valued continuous
function c2 on the set of all (t1, t) ∈ [0, T ] × [0, T ] with t1 ≤ t is given by

c2(t1, t) :=

∫ t

t1

(

kθ(s) + λθ(s)
)

λθ(s) ds + 2

(
∫ t

t1

λθ(s)2 ds

)

1
2

.
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Let us now settle the question of pathwise uniqueness for the second SDE in (4.1) by
referring to a comparison estimate, under a one-sided Lipschitz continuity condition on
the drift ζ and an Osgood continuity condition on compact sets on the diffusion η:

(V.3) There is λζ ∈ L 1(R) with sgn(v − ṽ)(ζ(·, v)− ζ(·, ṽ)) ≤ λζ |v − ṽ| for all v, ṽ ∈ R a.e.

(V.4) For each n ∈ N there are λη,n ∈ L 2(R+) and an increasing continuous function
ρn : R+ → R+ that is positive on ]0, ∞[ such that

|η(·, v) − η(·, ṽ)| ≤ λη,nρn(|v − ṽ|)

for any v, ṽ ∈ [−n, n] a.e. and
∫ 1

0 ρn(v)−2 dv = ∞.

Remark 4.3. The bound in (V.3) is valid if and only if (ζ(·, v) − ζ(·, ṽ))/(v − ṽ) ≤ λζ for
all v, ṽ ∈ R with v 6= ṽ a.e. For instance, this holds if ζ(s, ·) is locally absolutely continuous
and its weak derivative ∂vζ(s, ·) is bounded from above by λζ(s) for a.e. s ∈ [0, T ].

Under (V.3) and (V.4), an application of Corollary 3.9, combined with Remark 3.10,
and Proposition 3.13 in [26] shows that there is pathwise uniqueness for the second SDE
in (4.1) and any two solutions V and Ṽ satisfy

E
[|Vt − Ṽt|

] ≤ e

∫ t

t0
λζ(s) ds

E
[|Vt0 − Ṽt0 |] (4.6)

for each t ∈ [t0, T ]. Regarding strong existence, let us additionally require two conditions
involving the growth and continuity of the drift and diffusion coefficients ζ and η:

(V.5) There are kζ , lζ ∈ L 1(R) such that kζ ≥ 0 and sgn(v)ζ(·, v) ≤ kζ + lζ |v| for any
v ∈ R a.e. and η(·, 0) = 0.

(V.6) ζ(t, ·) and η(t, ·) are continuous for a.e. t ∈ [0, T ]. Further, for any n ∈ N there is
cζ,η,n ∈ R+ such that |ζ(·, v)| ∨ |η(·, v)| ≤ cζ,η,n for each v ∈ [−n, n] a.e.

Then Theorem 3.27 in [26] asserts that for any Ft0 -measurable integrable random
variable ξ the second SDE in (4.1) admits a unique strong solution V such that Vt0 = ξ
a.s. and

E
[|Vt|

] ≤ e

∫ t

t0
lζ(s) ds

E
[|ξ|] +

∫ t

t0

e
∫ t

s
lζ(s̃) ds̃kζ(s) ds (4.7)

for all t ∈ [t0, T ]. Now we give sufficient conditions for any solution to have a.s. positive
paths. To this end, we generalise Theorem 2.2 in Mishura and Posashkova [29]. There, it
is in particular required that

inf
(t,x)∈[t0,T ]×[δ,∞[

η(t, x) > 0 for any δ > 0.

A positivity condition on the diffusion coefficient η, which we omit. Instead, the weakened
regularity condition that we impose reads as follows:

(V.7) There are ε > 0 and c0, cζ ∈ L 1(R+) as well as increasing functions ϕ0 :]0, ε] → R+

and ϕζ : [ε, ∞[→]0, ∞[ such that ϕζ is continuous and

η(·, v)2

2v2
≤ ζ(·, v)

v
+ c0ϕ0(v) and ζ(·, ṽ) ≥ −cζϕζ(ṽ) (4.8)

for each v ∈]0, ε[ and any ṽ ≥ ε a.e.

Regardless of whether uniqueness in law holds for the underlying equation, under this
condition any solution starting at a positive deterministic value remains positive.
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Proposition 4.4. Let (V.7) be valid. Then any solution V to the second SDE in (4.1)
such that Vt0 = v0 a.s. for some v0 > 0 satisfies Vt > 0 for any t ∈ [t0, T ] a.s.

Example 4.5. For n ∈ N let k, l1, . . . , ln ∈ L 1(R) and ϕ1, . . . , ϕn be real-valued Borel
measurable functions on ]0, ∞[ such that k ≥ 0,

ζ(t, v) = k(t) + l1(t)ϕ1(v) + · · · + ln(t)ϕn(v) and lim sup
v↓0

|ϕi(v)|
v

< ∞

for all t ∈ [0, T ], any v > 0 and each i ∈ {1, . . . , n}. Suppose that there are ε0 > 0,
cη ∈ L 2(R+), γ ∈ [1/2, ∞[ and an increasing function ϕ :]0, ∞[→ R+ satisfying

|η(t, v)| ≤ cη(t)vγ(1 + vϕ(v)
)

1
2 for any (t, v) ∈ [0, T ]×]0, ε0[. (4.9)

If c2
η/2 ≤ k for γ = 1/2 and, less restrictively, c2

ηδ ≤ k for some δ > 0 whenever γ ∈]1/2, 1[,
then the first inequality in (4.8) holds. Indeed, take ε ∈]0, ε0] and c > 0 such that

|ϕi(v)| ≤ cv, and v2γ−1 ≤ 2δ in case γ ∈]1, 2, 1[,

for any i ∈ {1, . . . , n} and all v ∈]0, ε0]. Then c0 := c
∑n

l=1 |li| + c2
η/2 and ϕ0 :]0, ε] → R+

given by ϕ0(v) := 1 + v2γ−2(1[1,∞[(γ) + vϕ(v)) satisfy

cη(t)2

2v
v2γ−1(1 + vϕ(v)

) ≤ ζ(t, v)

v
+ c0(t)ϕ0(v)

for all (t, v) ∈ [0, T ]×]0, ε[. In particular, we may take α ∈ [1, ∞[n, β ∈ [1/2, ∞[n and
λ1, . . . , λn ∈ L 2(R) such that ϕ1(v) = vα1 , . . . , ϕn(v) = vαn and

η(·, v) = λ1vβ1 + · · · + λnvβn for all v > 0. (4.10)

In this case, the estimate (4.9) holds for the choice cη =
∑n

i=1 |λi|, γ = mini∈{1,...,n} βi and
ϕ = 0 as soon as ε0 < 1.

Due to the integrability condition
∫ T

0 (1 − ρ(s)2)−1 ds < ∞, there is another standard
(Ft)t∈[0,T ]-Brownian motion W that is independent of W̃ such that

Ŵt =

∫ t

0

√

1 − ρ(s)2 dWs +

∫ t

0
ρ(s) dW̃s for all t ∈ [0, T ] a.s.

By using this representation, a simple transformation shows that we can rearrange (4.1)
into the two-dimensional SDE

d

(

Xt

Vt

)

=

(

b(t) − 1
2θ(t, Vt)

2

ζ(t, Vt)

)

dt +

(

θ(t, Vt)
√

1 − ρ(t)2 θ(t, Vt)ρ(t)
0 η(t, Vt)

)

d

(

Wt

W̃t

)

(4.11)

for t ∈ [t0, T ]. Then the pair of two adapted continuous processes X and V is a solution
to this SDE if and only if (exp(X), V ) solves the initial one.

Further, (4.11) induces a linear differential operator Lb,ζ on C1,2([0, T [×R×]0, ∞[)
with values in the linear space of all real-valued measurable functions by

Lb,ζ(ϕ)(t, x, v) :=

(

b(t) − 1

2
θ(t, v)2

)

∂ϕ

∂x
(t, x, v) + ζ(t, v)

∂ϕ

∂v
(t, x, v)

+
1

2
θ(t, v)2 ∂2ϕ

∂x2
(t, x, v) + θ(t, v)η(t, v)ρ(t)

∂2ϕ

∂x∂v
(t, x, v) +

1

2
η(t, v)2 ∂2ϕ

∂v2
(t, x, v).

(4.12)
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This formula is obtained by multiplying the diffusion coefficient with its transpose, as we
readily recall, and for every solution (X, V ) to (4.11) Itô’s formula entails that the process
[t0, T ] × Ω → R,

(t, ω) 7→ ϕ(t, Xt, Vt)(ω) −
∫ t

t0

(

∂

∂s
+ Lb,ζ

)

(ϕ)(s, Xs, Vs)(ω) ds

is a martingale for any ϕ ∈ C1,2,2
0 ([0, T ] ×R×]0, ∞[). We will now show that (4.11) yields

a time-inhomogeneous Markov process with the right-hand Feller property in the sense
of [25][Section 2.3], which will allow us to apply the results on mild solutions therein.

In fact, what we get is a continuous strong Markov process, or in short, a diffusion,
and we will realise it on the canonical space Ω̂ of all R×]0, ∞[-valued continuous paths on
[0, T ], endowed with its Borel σ-field F̂ . Let X̂ : [0, T ]× Ω̂ → R and V̂ : [0, T ]× Ω̂ →]0, ∞[
be given by

X̂t(ω̂) := ω̂1(t) and V̂t(ω̂) := ω̂2(t).

Then (X̂, V̂ ) serves as canonical process, its natural filtration (F̂t)t∈[0,T ] satisfies F̂ = F̂T

and the law of any two processes X : [0, T ] × Ω → R and V : [0, T ] × Ω →]0, ∞[ is of the
form P ((X, V ) ∈ B̂) = P ◦ (X, V )−1((X̂, V̂ ) ∈ B̂) for all B̂ ∈ F̂ .

Proposition 4.6. Under (V.1)-(V.7), the following four assertions hold:

(i) We have pathwise uniqueness for the SDE (4.11).

(ii) For any (x0, v0) ∈ R×]0, ∞[ there is a unique strong solution (Xt0,x0,v0 , V t0,v0)
to (4.11) such that (Xt0,x0,v0

t0
, V t0,v0

t0
) = (x0, v0) a.s. and V t0,v0 > 0.

(iii) The map [0, t] × R×]0, ∞[→ R, (s, x, v) 7→ E[ϕ(s, Xs,x,v
t , V s,v

t )] is right-continuous
for any t ∈]0, T ] and each ϕ ∈ Cb([0, T ] × R×]0, ∞[).

(iv) Let Ps,x,v be the law of the process [0, T ] × Ω → R×]0, ∞[, (t, ω) 7→ (Xs,x,v
t∨s , V s,v

t∨s)(ω)
for any (s, x, v) ∈ [0, T ] × R×]0, ∞[ and denote the set of all these measures by P.
Then ((X̂, V̂ ), (F̂t)t∈[0,T ],P) is a diffusion that is right-hand Feller.

Example 4.7. Let θ̂0, θ̂ ∈ L 2(R), n ∈ N, α ∈ [1, ∞[n and β ∈ [1/2, ∞[n. Assume that the
functions k, l0 : [0, T ] → R and the maps l, λ : [0, T ] → R

n are measurable and bounded
such that θ(·, v) = θ̂0 + θ̂

√
v,

ζ(·, v) = k − l0v + l1vα1 + · · · + lnvαn and η(·, v) = λ1vβ1 + · · · + λnvβn

for any v > 0. Further, let k ≥ 0 and li ≤ 0 for all i ∈ {1, . . . , n} and we require that for
γ := min{β1, . . . , βn} it holds that (

∑n
i=1 |λi|)2/2 ≤ k, if γ = 1/2, and

( n
∑

i=1

|λi|
)2

δ ≤ k for some δ > 0, if γ ∈]1/2, 1[.

By imposing a radial representation of θ and η on [0, T ] × R and setting ζ(·, v) = ζ(·, 0)
for all v < 0, the SDE (4.1) reduces to

dSt = b(t)St dt +
(

θ̂0(t) + θ̂(t)|Vt|
1
2
)

St dŴt,

dVt =

(

k(t) − l0(t)Vt +
n
∑

i=1

li(t)(V
+

t )αi

)

dt +
n
∑

i=1

λi(t)|Vt|βi dW̃t

(4.13)

for t ∈ [t0, T ] with initial conditions St0 = s0 and Vt0 = v0 a.s. for some s0, v0 > 0. In
particular, for n = 1 and l = 0 we recover the dynamics in a generalised time-dependent
version of the following option pricing models:
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(1) The stock price model by Black and Scholes [8] for θ̂0 = k = l0 = λ = 0 and θ̂ = 1,
which entails that any solution V to the second SDE in (4.13) satisfies V = v0 a.s.,
where

√
v0 stands for the volatility.

(2) The stochastic volatility model by Heston [23] for θ̂0 = 0, l0 > 0 and β = 1/2, in
which case V is a square-root diffusion. There, l0 is the mean reversion speed, k/l0
is the mean reversion level and the same positivity condition λ2 ≤ 2k for V applies.

(3) The Garch diffusion model [28] for θ̂0 = 0, l0 > 0 and β = 1. Similarly to the Heston
model, l0 is the mean reversion speed and k/l0 the mean reversion level.

We observe that (V.1)-(V.7) hold. In fact, because the function R → R+, v 7→ (v+)γ

is increasing, non-positive on ] − ∞, 0[ and non-negative on ]0, ∞[ for any γ > 0, the
one-sided conditions (V.3) and (V.5) follow. More precisely,

sgn(v − ṽ)(ζ(·, v) − ζ(·, ṽ)) ≤ −l0|v − ṽ| and sgn(v)ζ(·, v) ≤ k − l0v

for every v, ṽ > 0 a.s. From Example 4.5 we infer the validity of (V.7) and the other
conditions are readily checked. Consequently, Proposition 4.6 applies to the SDE (4.13).

4.2 The logarithmised pre-default valuation PDE

Now we combine the stochastic volatility model of the previous section with the market
model from Section 3 to characterise pre-default value processes via mild solutions to the
associated parabolic PDE.

Let (Ω, F , (Ft)t∈[0,T ], P̃ ) serve as underlying probability space such that the usual
conditions hold. We assume that both S and V take positive values only and consider the
following specifications for our market model:

(P.1) G(τI) and G(τC) are deterministic, absolutely continuous, positive and satisfy (3.5),
τI and τC are (Ft)t∈[0,T ]-conditionally independent under P̃ and G(τ) = G(τI)G(τC).

(P.2) The risk-free rate r, the remuneration rates +c, −c, the funding rates +f̃ , −f̃ and
the hedging rates +h̃, −h̃, which have integrable paths, are deterministic. That is,

rt = r̂(t), ict = ĉi(t), if̃t = f̂i(t), ih̃t = ĥi(t)

for every t ∈ [0, T ], both i ∈ {+, −} and some r̂, ĉi, f̂i, ĥi ∈ L 1(R).

(P.3) There is a measurable function φ :]0, ∞[2→ R+ and a real-valued continuous function
π̂ on [0, T ]×]0, ∞[2 such that Φ(s, v) = φ(s(T ), v(T )) for any s, v ∈ C([0, T ]) that
are positive and π = π̂(·, S, V ).

(P.4) There are α, β ∈ C([0, T ]) with 0 ≤ α ≤ β ≤ 1 and some continuous function
Ĥ : [0, T ]×]0, ∞[2×R → R satisfying C(Y ) = αY , ε(Y ) = βY ,

H̃(Y ) = Ĥ(·, S, V, Y ) and F̃ (Y ) = (1 − α)Y for all Y ∈ S .

Remark 4.8. Under (P.1) and (P.2), Remark 3.3 entails that any FT -measurable random
variable lies in L̃ (r, τ) if and only if it is P̃ -integrable. Further, if Y is a process that is
(Ft)t∈[0,T ]-progressively measurable, then Y ∈ S̃ (r, τ) ⇔ ∫ T

0 Ẽ
[|Yt|

]

dt < ∞.

It is readily seen that (P.1) holds in Example 3.9 as soon as the two processes λ(I)

and λ(C) there are deterministic. Put differently, for both i ∈ {I, C} there is λ̂i ∈ L 1(R+)
such that λ(i) = λ̂i and

∫ t
0 λ̂i(s) ds > 0 for some t ∈]0, T ].
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Further, (P.1) and (P.2) imply (M.2) and (M.4), respectively. If, conversely, (M.4) is
satisfied and the pre-default rates +f , −f , +h, −h are deterministic, then, as required
in (P.2), so are the rates +f̃ , −f̃ , +h̃, −h̃, according to (3.4).

In (P.3) the payoff functional Φ is reduced to a function of the terminal state and the
dividend rate π to a function of the current state of the process [0, T ]×Ω → [0, T ]×]0, ∞[2 ,
(t, ω) 7→ (t, St, Vt)(ω). So, if (P.1) and (P.2) are valid, then (M.1) holds if and only if

Ẽ[φ(ST , VT )] and

∫ T

0
Ẽ
[|π̂(t, St, Vt)|

]

dt are finite, (4.14)

as Remark 4.8 shows. Now let for the moment (P.4) be valid. Then we can use Ĥ(·, S, V, Y )
as pre-default version of Ĥ(·, S, V, Ỹ ) for any Ỹ ∈ S̃ that is integrable up to time τ with
pre-default version Y if

Ẽ
[|Ĥ(t, St, Vt, Yt)|

]

< ∞ for all t ∈ [0, T ]. (4.15)

Under this condition, (M.3) follows from (P.4). Hence, let us now assume that (P.1)-(P.4),
(4.14) and (4.15) hold. Then (M.1)-(M.4) are satisfied and we may turn to the pre-default
valuation in (VE).

Moreover, (P.4) now ensures that the collateral process C(V ) and the close-out value
ε(V ) are deterministic ordered fractions of any given pre-default value process V and the
financing hypothesis (3.26) holds.

By recalling the time-dependent random functionals 0B, IB and CB in (3.16), we see
that the random functional B given by (3.24) is of the form

Bt(Y ) = πt − (

ct(Y ) − rt
)

Ct(Y ) − (

ft(Y ) − rt
)

Ft(Y ) − (

rt − ht(Y )
)

Ht(Y ) − rtYt

− Ġt(τI)

Gt(τI)

(

εt(Y ) + LGDI
(

(εt − Ct)
− + F +

t

)

(Y )1{I=B} − Yt
)

− Ġt(τC)

Gt(τC)

(

εt(Y ) − LGDC(εt − Ct)
+(Y ) − Yt

)

= B̂(t, St, Vt, Yt)

for all t ∈ [0, T ] and each continuous Y ∈ S with the real-valued measurable function B̂
defined on [0, T ]×]0, ∞[2×R via

B̂(t, s,v, y) := π̂(t, s, v) − (

ĉ+α + f̂+(1 − α)
)

(t)y+ +
(

ĉ−α + f̂−(1 − α)
)

(t)y−

− (r̂ − ĥ+)(t)Ĥ+(t, s, v, y) + (r̂ − ĥ−)(t)Ĥ−(t, s, v, y)

+ gI(t)

(

(1 − β)(t)y − LGDI
(

(β − α)(t)y− + (1 − α)(t)y+)
1{B}(I)

)

+ gC(t)

(

(1 − β)(t)y + LGDC(β − α)(t)y+
)

,

(4.16)

where gi : [0, T ] → R is a measurable integrable function satisfying gi = Ġ(τi)/G(τi) for
both i ∈ {I, C}. In this deterministic setting, all the cash flows and costs and benefits

conCF(V ), colC(V ), funC(V ), hedC(V ) and defCF(V , Ṽ )

are measurable functionals of (τI , τC , S, V, V , Ṽ ) for any Ṽ ∈ S̃ that is integrable up to
time τ with pre-default version V . Further, the continuous process A(V ), given by (3.17)
and appearing in (VE), is adapted to the natural filtration of (S, V, V ) and we may now
deal with the assumed existence of P̃ .

So, suppose that (4.1) is solved strongly by S and V on [t0, T ] under P for some
t0 ∈ [0, T ] and (V.1) holds. Let λ, λ̃ be two (Ft)t∈[t0,T ]-progressively measurable processes
with square-integrable paths and define a continuous local martingale Z via

Zt0 = 1 and Zt = exp

(

−
∫ t

t0

λs dWs −
∫ t

t0

λ̃s dW̃s − 1

2

∫ t

t0

λ2
s + λ̃2

s ds

)

(4.17)
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for any t ∈ [t0, T ] a.s. Under the condition that E[ZT ] = 1, Girsanov’s theorem states that

W (λ) := W +
∫ ·∨t0

t0
λs ds and W (λ̃) := W̃ +

∫ ·∨t0
t0

λ̃s ds are independent (Ft)t∈[0,T ]-Brownian

motions under the measure P̂t0,λ,λ̃ on (Ω, F ) given by P̂t0,λ,λ̃(A) := E[ZT1A].
Assuming that S is the only price process to consider, Remark 3.2 and (P.1) entail

that P̂t0,λ,λ̃ is an equivalent local martingale measure after time t0 if and only if

(b − r̂)(t) = θ(t, Vt)
(

λt

√

1 − ρ(t)2 + λ̃tρ(t)
)

for a.e. t ∈ [t0, T ] a.s.

Indeed, this follows from the representation (4.2) in Lemma 4.1 and the relation between
Ŵ and (W, W̃ ), stated directly before (4.11). Thus, if θ(·, v) > 0 for all v > 0, then we
propose to take the market prices of risk

λ̃t = γθ(t, Vt) and λt =

(

(b − r̂)(t)

θ(t, Vt)
− γθ(t, Vt)ρ(t)

)

1
√

1 − ρ(t)2
(4.18)

for all t ∈ [t0, T ] and some γ ∈ R+. As V is a strong solution, λ is independent of
W . Hence, if b, r̂, ρ and θ are continuous, then it follows from Theorem 21.4 in [1] and
Lemma 35 in [16] that

E[ZT ] = E

[

exp

(

− γ

∫ T

t0

θ(t, Vt) dW̃t − 1

2
γ2
∫ T

t0

θ(t, Vt)
2 dt

)]

,

and for E[ZT ] = 1 to hold, it suffices that exp(γ2

2

∫ T
t0

θ(t, Vt)
2 dt) is P -integrable, by

Novikov’s condition. In this case, we set P̃t0,V,γ := P̂t0,λ,λ̃ and for the log-price process
X = log(S) we see that (X, V ) solves the SDE

d

(

Xt

Vt

)

=

(

r̂(t) − 1
2θ(t, Vt)

2

(

ζ − γη̂θ̂
)

(t, Vt)

)

dt +

(

θ(t, Vt)
√

1 − ρ(t)2 θ(t, Vt)ρ(t)
0 η(t, Vt)

)

d

(

W
(λ)
t

W
(λ̃)
t

)

(4.19)

for t ∈ [t0, T ] under P̃t0,V,γ, where η̂, θ̂ : [0, T ] × R → R are given by η̂(t, v) := η(t, v+)

and θ̂(t, v) := θ(t, v+), since the values of η and θ on [0, T ]×] − ∞, 0[ are irrelevant. In
particular, as γ = 0 feasible, there exists an equivalent local martingale measure, and we
refer to Section 3 in [35] for a more specific analysis in the Heston model.

Under certain conditions, we now show that if V ∈ S is of the form Vt = u(t, Xt, Vt)
for all t ∈ [0, T ] and some continuous function u : [0, T ]×R×]0, ∞[→ R, then it solves (VE)
as soon as u is a mild solution to the parabolic semilinear PDE

∂u

∂t
(t, x, v) + Lr̂,ζ−γη̂θ̂(u)(t, x, v) = −B̂(t, ex, v, u(t, x, v)) (4.20)

for all (t, x, v) ∈ [0, T [×R×]0, ∞[ with terminal value condition u(T, ·, ·) = φ(exp(·), ·).
Thereby, Lr̂,ζ−γη̂θ̂ stands for the differential operator (4.12) when (b, ζ) is replaced by

(r̂, ζ − γη̂θ̂) with the arbitrarily chosen γ ∈ R+.
For introduction of the mild solution concept and the resulting characterisation of

value processes, we first ensure that Proposition 4.6 applies to any two-dimensional SDE
whose coefficients agree with those of (4.19), by introducing the following condition:

(V.8) If γ > 0, then θ is continuous, θ(·, 0) = 0 and there are kθ,η, lθ,η, λθ,η ∈ L 1(R),
ε0 > 0 and λη,0 ∈ L 2(R+) such that

(ηθ)(·, v) ≥ kθ,η + lθ,ηv and sgn(v − ṽ)
(

(ηθ)(·, v)− (ηθ)(·, ṽ)
) ≥ λθ,η|v − ṽ| (4.21)

for any v, ṽ ∈ R+ and |η(·, v)| ≤ λη,0v1/2 for all v ∈]0, ε0[ a.e.
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Remark 4.9. Let θ(t, ·) and η(t, ·) be non-negative and increasing on R+ for a.e. t ∈ [0, T ],
η(·, 0) = 0 and (V.4) be valid for ρ1(v) = v1/2 for all v ∈ R+. Then (4.21) and the
succeeding bound on η hold for kθ,η = lθ,η = λθ,η = 0, ε0 = 1 and λη,0 = λη,1.

Now we assume that (V.1)-(V.8) hold, in which case the same conditions (V.1)-(V.7)
follow for r̂ and ζ − γθ̂η̂ instead of b and ζ, respectively, which shows that Proposition 4.6
also covers the type of two-dimensional SDE that we just derived.

Thus, for any (s, x, v) ∈ [0, T ]×R×]0, ∞[ let (X̃s,x,v, Ṽ s,v) be a strong solution to (4.11)
on [s, T ] when (b, ζ) is replaced by (r̂, ζ − γη̂θ̂) such that (X̃s,x,v

s , Ṽ s,v
s ) = (x, v) a.s. and

Ṽ s,v > 0. Further, denote the law of the continuous process

[0, T ] × Ω → R×]0, ∞[, (t, ω) 7→ (X̃s,x,v
t∨s , Ṽ s,v

t∨s)(ω)

by P̃s,x,v and recall the canonical process (X̂, V̂ ) from Section 4.1. Then, for a measurable
function B̃ : [0, T ]×]0, ∞[2×R → R a mild solution to the terminal value problem (4.20)
with B̃ instead of B̂ is a measurable function u : [0, T ] × R×]0, ∞[→ R for which

∫ T

s

∣

∣B̃
(

t, exp(X̂t), V̂t, u(t, X̂t, V̂t)
)∣

∣ dt

is finite and P̃s,x,v-integrable such that the implicit integral equation

Ẽs,x,v
[

φ(exp(X̂T ), V̂T )
]

= u(s, x, v)

− Ẽs,x,v

[
∫ T

s
B̃
(

t, exp(X̂t), V̂t, u(t, X̂t, V̂t)
)

dt

] (4.22)

holds for any (s, x, v) ∈ [0, T ] × R×]0, ∞[. Provided that φ is continuous, we also recall
that a classical solution to this terminal value problem is a real-valued continuous function
u on [0, T ]×R×]0, ∞[ that lies in C1,2,2([0, T [×R×]0, ∞[) and satisfies (4.20) and u(T, ·, ·)
= φ(exp(·), ·).

Thereby, we stress the fact that if B̃ satisfies the two conditions (4.25) and (4.26)
considered below and φ is bounded and continuous, then every bounded classical solution
is also a mild solution. For instance, see Section 2.4 in [27] for a concise justification.

Next, as we will use any of the derived local martingale measures, let (Xs,x,v, V s,v) be
a strong solution to (4.11) on [s, T ] satisfying (Xs,x,v

s , V s,v
s ) = (x, v) a.s. and V s,v > 0, and

write Ps,x,v for the law of the process [0, T ] × Ω → R×]0, ∞[, (t, ω) 7→ (Xs,x,v
t∨s , V s,v

t∨s)(ω)
for each (s, x, v) ∈ [0, T ] × R×]0, ∞[, just as in Proposition 4.6. Let us also recall the
regularity conditions that we used for this derivation:

(V.9) b, r̂, ρ and θ are continuous and θ(·, v) > 0 for all v > 0.

Now we come to one of the main results of our work, a characterisation of value
processes in terms of mild solutions, which motivates to call any mild solution to the
terminal value problem (4.20) a pre-default valuation function.

Theorem 4.10. Let (V.1)-(V.9) and (P.1)-(P.4) hold, φ be bounded and
∫ T

s
Ẽs,x,v

[|π̂(t, exp(X̂t), V̂t)|
]

dt and Es,x,v

[

exp

(

γ2

2

∫ T

s
θ(t, V̂t)

2 dt

)]

(4.23)

be finite for all (s, x, v) ∈ [0, T ] × R×]0, ∞[. Further, let u ∈ Cb([0, T ] × R×]0, ∞[) and
define V ∈ S by Vt := u(t, Xt, Vt). Then the following two assertions hold:

(i) Suppose for each (s, x, v) ∈ [0, T ] × R×]0, ∞[ that

sup
t∈[s,T ]

Ẽs,x,v
[∣

∣Ĥ
(

t, exp(X̂t), V̂t, u(t, X̂t, V̂t)
)∣

∣

]

< ∞, (4.24)

and V solves (VE) on [s, T ] whenever (X, V ) is a solution to (4.11) on [s, T ] with
(Xs, V s) = (x, v) a.s. and P̃ = P̃s,V,γ. Then u is a mild solution to (4.20).
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(ii) Conversely, let u be a mild solution to (4.20) and (s, x, v) ∈ [0, T ]×R×]0, ∞[ be such
that (4.24) holds. If (X, V ) solves (4.11) on [s, T ],

(Xs, V s) = (x, v) a.s., P̃ = P̃s,V,γ

and (Ft)t∈[0,T ] is the right-continuous filtration of the augmented natural filtration
of (X, V ), then V is a solution to (VE) on [s, T ].

Remark 4.11. The integrability conditions in (4.23) and (4.24) on π̂ and Ĥ are satisfied
if there are cπ̂ ∈ L 1(R+) and cĤ ∈ R+ such that

|π̂(·, ex, v)| ≤ cπ̂(1 + x + v) for any (x, v) ∈ R×]0, ∞[ a.e.

and |Ĥ(·, ex, v, y)| ≤ cĤ(1 + x + v + |y|) for every (x, v, y) ∈ R×]0, ∞[×R, as the two
growth estimates (4.4) and (4.7) show.

For an analysis of mild solutions to semilinear PDEs such as (4.20) we will now apply
results from [25]. Let B̃ be a real-valued measurable function on [0, T ]×]0, ∞[2×R for
which the following affine growth condition and Lipschitz condition on compact sets hold:
There is cB̃ ∈ L 1(R+) such that

|B̃(·, ex, v, y)| ≤ cB̃(1 + |y|) (4.25)

for all v > 0 and any x, y ∈ R a.e. Moreover, for every n ∈ N there is λB̃,n ∈ L 1(R+)
satisfying

|B̃(·, ex, v, y) − B̃(·, ex, v, ỹ)| ≤ λB̃,n|y − ỹ| (4.26)

for all (x, v) ∈ R×]0, ∞[ and any y, ỹ ∈ [−n, n] a.e. If φ is bounded, then Theorem 2.15
in [25] yields a unique bounded mild solution uB̃,φ to the terminal value problem (4.20)

when B̂ is replaced by B̃.
To ensure that (4.25) and (4.26) hold for B̂, we require that the dividend function π̂

obeys a suitable bound and the pre-default hedging function Ĥ is both of affine growth
and locally Lipschitz continuous in y ∈ R, uniformly in (t, s, v) ∈ [0, T ]×]0, ∞[2:

(P.5) There exist some cπ̂ ∈ L 1(R+) and cĤ ≥ 0 satisfying |π̂(·, exp(x), v)| ≤ cπ̂ for every
(x, v) ∈ R×]0, ∞[ a.e. and

|Ĥ(t, ex, v, y)| ≤ cĤ(1 + |y|)

for all (t, x, v, y) ∈ [0, T ] × R×]0, ∞[×R. Further, for each n ∈ N there is λĤ,n ≥ 0
satisfying

|Ĥ(t, ex, v, y) − Ĥ(t, ex, v, ỹ)| ≤ λĤ,n|y − ỹ|
for each (t, x, v) ∈ [0, T ] × R×]0, ∞[ and every y, ỹ ∈ [−n, n].

Then an application of Theorem 2.15 in [25] yields the existence and uniqueness of
a mild solution, including a right-continuity and value analysis. Thereby, J denotes an
interval in R with d := inf J and d := sup J .

Proposition 4.12. Let (V.1)-(V.8) and (P.1)-(P.5) be valid and φ be bounded. Then there
is a unique bounded mild solution uφ to (4.20) that is right-continuous if φ is continuous.
Moreover, if

d > −∞ (resp. d < ∞) implies B̂(·, ex, v, d) ≥ 0 (resp. B̂(·, ex, v, d) ≤ 0) (4.27)

for all (x, v) ∈ R×]0, ∞[ a.e., then uφ takes all its values in J as soon as φ does.
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Remark 4.13. As payoff function, φ is modelled to be R+-valued. Thus, the pre-default
valuation function uφ is non-negative if

π̂(·, ex, v) ≥ (r̂ − ĥ+)Ĥ+(·, ex, v, 0) − (r̂ − ĥ−)Ĥ−(·, ex, v, 0) (4.28)

for any (x, v) ∈ R×]0, ∞[ a.e. In this case, uφ > 0 follows from φ > 0.

Next, from Lemma 4.2 in [25] we obtain a sensitivity analysis. Let φ̃ :]0, ∞[2→ R be
measurable and bounded and suppose in the setting of Proposition 4.12 that uφ and uB̃,φ̃

are J-valued. This is the case if φ, φ̃ ∈ J and condition (4.27) holds not only for B̂ but
also for B̃. Then

B̃ ≥ B̂ on [0, T ]×]0, ∞[2×J and φ̃ ≥ φ entails uB̃,φ̃ ≥ uφ. (4.29)

So, uφ depends on an increasing way on the dividend function π̂, the remuneration rate

ĉ−, the pre-default funding rate f̂− and the pre-default hedging rate ĥ+. At the same
time, the comparison (4.29) shows that uφ depends decreasingly on ĉ+, f̂+ and ĥ−.

If (4.28) holds, then the dependence is monotonically increasing on the term gC . To
draw the same conclusion for gI , the estimate 1 − β ≥ LGDI(1 − α) has to be valid when
the investor I is a bank. This, for instance, is the case whenever the fractions α and β
coincide.

Finally, to give conditions under which the mild solution uB̃,φ̃ turns into a classical
one, we use Theorem 2.4 in [2]. This leads to a local Lipschitz condition on the coefficients
in (4.19) and the determinant of the diffusion coefficient should not vanish:

(V.10) r̂ and ρ are Lipschitz continuous, ζ, η and θ are locally Lipschitz continuous on
[0, T ]×]0, ∞[ and |η| and |θ| are positive on [0, T ]×]0, ∞[.

Moreover, B̃ is required to be of affine growth and locally Lipschitz continuous in y ∈ R,
uniformly in (t, s, v) ∈ [0, T ]×]0, ∞[2. So, the functions cB̃ and λB̃,n in (4.25) and (4.26),
respectively, should be bounded for all n ∈ N. According to the assumptions in [2], the
function B̃ has to be continuously differentiable as well. However, a short investigation of
the proof therein shows that local Hölder continuity suffices.

In summary, if (V.1)-(V.8) and (V.10) hold, B̃ satisfies these conditions and φ̃ is
continuous, then [2] asserts that the terminal value problem (4.20) with (B̃, φ̃) instead
of (B̂, φ) admits a unique bounded classical solution. This function must be uB̃,φ̃, as

Theorem 2.15 in [25] yields uniqueness among bounded mild solutions. To ensure that B̂
meets the same requirements as B̃, we require the following condition:

(P.6) π̂ is bounded. Further, π̂, the rates r̂, ĉ+, ĉ−, f̂+, f̂−, ĥ+, ĥ−, the functions gI , gC ,
the fractions α, β and the hedging function Ĥ are locally Hölder continuous.

Then Theorem 2.4 in [2] combined with Theorem 2.15 in [25] yield sufficient conditions
for the unique mild solution of Proposition 4.12 to be classical.

Corollary 4.14. Let (V.1)-(V.8), (V.10) and (P.1)-(P.6) hold and φ be bounded and
continuous. Then uφ is the unique bounded classical solution to (4.20).

5 Proofs for the preliminary results and the market model

5.1 Proofs for the representations of conditional expectations

Proof of Lemma 2.1. For Ã ∈ F̃s there is A ∈ Fs such that {ρ > s} ∩ A = {ρ > s} ∩ Ã.
Thus, the properties of conditional expectation yield that

E
[

X1{ρ>t}P (ρ > s|Fs)1Ã

]

= E
[

E[X1{ρ>t}|Fs]P (ρ > s|Fs)1A
]
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= E
[

E[X1{ρ>t}|Fs]1{ρ>s}∩Ã

]

.

This implies the assertion.

Proof of Corollary 2.2. If X = X̃ a.s. on {ρ > t}, then the Ft-measurability of X yields
that XGt(ρ) = E[X1{ρ>t}|Ft] = E[X̃1{ρ>t}|Ft] a.s.

Conversely, suppose that (2.3) holds. Then X̃P (ρ > t|F̃t) = XP (ρ > t|F̃t) a.s. on
{Gt(ρ) > 0}, by Lemma 2.1. Thus,

E[X̃1{ρ>t}∩{Gt(ρ)>0}∩Ã] = E[X̃P (ρ > t|F̃t)1{Gt(ρ)>0}∩Ã] = E[X1{ρ>t}∩{Gt(ρ)>0}∩Ã]

for any Ã ∈ F̃t. We first choose Ã = {n ≥ X̃ > X} and then Ã = {X̃ ≤ X ≤ n} in this
identity for each n ∈ N to infer that X = X̃ a.s. on {ρ > t}, since

P ({ρ > t} ∩ {Gt(ρ) = 0}) = E[Gt(ρ)1{Gt(ρ)=0}] = 0.

Proof of Lemma 2.3. Since E[X̃t1{ρ>t}|Ft] = XtGt(ρ) a.s. for every t ∈ [s, T ], Fubini’s
theorem directly yields that

E

[
∫ T ∧ρ

s
X̃t dt1A

]

=

∫ T

s
E
[

X̃t1{ρ>t}1A
]

dt = E

[
∫ T

s
XtGt(ρ) dt1A

]

for each A ∈ Fs. Thus, the claim holds.

Proof of Lemma 2.5. The system E of all sets ]s, s̃] × A, where s, s̃ ∈ [0, t] satisfy s ≤ s̃
and A ∈ {∅, {∞}}, is an ∩-stable generator of B([0, t] ∪ {∞}) and we readily check that

P (s1 < σ ≤ t1, s2 < τ ≤ t2|Ft) = P (s1 < σ ≤ t1|Ft)P (s2 < τ ≤ t2|Ft) a.s.

for any s1, t1, s2, t2 ∈ [0, t] ∪ {∞} with s1 ≤ t1 and s2 ≤ t2. In particular, the d-system of
all C ∈ B(([0, t] ∪ {∞})2) for which (2.4) holds includes E × E . Hence, the claim follows
from the monotone class theorem.

Proof of Proposition 2.6. For fixed s̃ ∈]s, T [ and every n ∈ N let Tn be a partition of
[s̃, T ] of the form Tn = {t0,n, . . . , tkn,n} for some kn ∈ N and t0,n, . . . , tkn,n ∈ [s̃, T ] with
s̃ = t0,n < · · · < tkn,n = T . We denote its mesh by

|Tn| = max
i∈{0,...,kn−1}

(ti+1,n − ti,n)

and assume that the resulting sequence (Tn)n∈N is refining, which means that Tn ⊂ Tn+1

for all n ∈ N, and satisfies limn↑∞ |Tn| = 0. Then the sequences (nX)n∈N and (nG(τ))n∈N

of left-continuous (Ft)t∈[0,T ]-adapted processes defined via

nXt :=
kn−1
∑

i=0

Xti,n
1]ti,n,ti+1,n](t) and nGt(τ) :=

kn−1
∑

i=0

Gti,n
(τ)1]ti,n,ti+1,n](t)

satisfy limn↑∞ nXt(ω) = Xt(ω) and limn↑∞ nGt(τ)(ω) = Gt(τ)(ω) for all (t, ω) ∈]s̃, T ] × Ω
for which X(ω) and G(τ)(ω) are left-continuous at t. For the decreasing sequence (τn)n∈N

of [0, T ] ∪ {∞}-valued random variables given by

τn(ω) :=
kn−1
∑

i=0

ti+1,n1{ti,n<τ≤ti+1,n}(ω), if τ(ω) < ∞,
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and τn(ω) := ∞, if τ(ω) = ∞, we have infn∈N τn = τ on {s̃ < τ}. For given n ∈ N we
define a left-continuous (F̃t)t∈[0,T ]-adapted process nX̃ by using the definition of nX when

X is replaced by X̃ and compute that

E[nX̃σ
T1{s̃<σ≤T ∧τn}|Fs] =

kn−1
∑

i=0

E[Xti,n
P (ti,n < σ ≤ ti+1,n, σ ≤ τn|Fti,n

)|Fs]

= −E

[
∫

]s̃,T ]
nXt nGt(τ) dGt(σ)

∣

∣

∣

∣

Fs

]

a.s.

Indeed, the (Ft)t∈[0,T ]-conditional independence of σ and τ gives

P (ti,n < σ ≤ ti+1,n, σ ≤ τn|Fti,n
) = P (ti,n < σ ≤ ti+1,n, τ = ∞|Fti,n

)

+
kn−1
∑

j=i

P (ti,n < σ ≤ ti+1,n, tj,n < τ ≤ tj+1,n|Fti,n
)

= −E[Gti,n
(τ)(Gti+1,n

(σ) − Gti,n
(σ))|Fti,n

] a.s.

for each i ∈ {0, . . . , kn − 1}. By construction, |nXt| ≤ supt̃∈]s,T ] |Xt̃| for every n ∈ N and
all t ∈]s̃, T ]. Therefore, dominated convergence yields that

lim
n↑∞

∫

]s̃,T ]
nXt nGt(τ) dGt(σ) =

∫

]s̃,T ]
XtGt(τ) dGt(σ).

Since | ∫]s̃,T ] nXt nGt(τ) dGt(σ)| does not exceed supt∈]s,T ] |Xt|Gt(τ)(VT (σ)−Vs(σ)) for each
n ∈ N, dominated convergence also implies that

E[X̃σ
T1{s̃<σ≤T ∧τ}|Fs] = −E

[
∫

]s̃,T ]
XtGt(τ) dGt(σ)

∣

∣

∣

∣

Fs

]

a.s.

Finally, for any sequence (sn)n∈N in ]s, T [ that converges to s, we have limn↑∞ 1]sn,T ](σ)
= 1]s,T ](σ) and limn↑∞

∫

]s,sn] XtGt(τ) dGt(σ) = 0. Hence, the claim follows from a final
application of the Dominated Convergence Theorem.

5.2 Proofs for the conditionally independent hitting times

Proof of Lemma 2.7. For any ω ∈ Ω we have τj(ω) ≤ t if and only if X
(j)
t (ω) ≥ ξj(ω),

since the increasing function X(j)(ω) is right-continuous. Hence, {τj ≤ t} coincides with

{ξj ≤ X
(j)
t } and lies in F̃t.

Further, this entails that {τ1 > s1, . . . , τj > sj} = {ξ1 > X
(1)
s1 , . . . , ξj > X

(j)
sj }. For this

reason, the independence of ξ and FT and the independence of ξ1, . . . , ξn yield that

P (τ1 > s1, . . . τj > sj|Ft) = P (ξ1 > x1, . . . , ξj > xj)|(x1,...,xn)=(X
(1)
s1

,...,X
(j)
sj

)

= G1(X(1)
s1

) · · · Gn(X(j)
sj

) a.s.

These considerations imply all the assertions.

Proof of Lemma 2.8. (i) By (2.5), we have Gs(ρ) > 0 a.s. if and only if Gi(X
(i)
s ) > 0

a.s. for any i ∈ {1, . . . , m}. Therefore, the definition of the essential supremum implies
the claim.

(ii) From the representation P (ρ > s) = E[
∏m

i=1 Gi(X
(i)
s )] we infer that P (ρ > s) = 1

if and only if Gi(X
(i)
s ) = 1 a.s. for all i ∈ {1, . . . , m}. In addition, P (ρ > s) = 0 if only if

Gi(X
(i)
s ) = 0 for some i ∈ {1, . . . , m} a.s., which yields the assertions.
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(iii) Let (sn)n∈N be an increasing sequence in [0, s[ that converges to s. Then the
σ-continuity of probability measures and dominated convergence lead to

P (ρ ≥ s) = lim
n↑∞

P (ρ > sn) = lim
n↑∞

E

[ m
∏

i=1

Gi(X
(i)
sn

)

]

= E

[ m
∏

i=1

Gi(X
(i)
s )

]

= P (ρ > s),

since limn↑∞ Gi(X
(i)
sn ) = Gi(X

(i)
s ) a.s. for each i ∈ {1, . . . , m}, due to the a.s. left-continuity

of Gi(X
(i)). Hence, P (ρ = s) = P (ρ ≥ s) − P (ρ > s) = 0.

Proof of Proposition 2.10. Since P (ρ > 0) = E[G0(ρ)] = G1(x̂1) · · · Gm(x̂m) and Λ0 = Ω,
we merely need to check the asserted formula for t > 0.

For this purpose, we define an ]0, 1[-valued continuously differentiable function ϕ on
]a1, b1[× · · · ×]am, bm[ by ϕ(x) :=

∏m
i=1 Gi(xi) and observe that the path

]0, t] → [0, ∞[m, s 7→ Xs(ω)

is absolutely continuous and takes all its values in ]a1, b1[× · · · ×]am, bm[ for each ω ∈ Λt,

as ai ≤ x̂i < X
(i)
s (ω) ≤ X

(i)
t (ω) < bi for every s ∈]0, t] and all i ∈ {1, . . . , m}. Thus,

ϕ(Xs) − ϕ(Xt) = −
m
∑

i=1

∫ t

s

∂ϕ

∂xi
(Xs̃) dX

(i)
s̃ = −

∫ t

s
ϕ(Xs̃)

m
∑

i=1

λ
(i)
s̃

(

G′
i

Gi

)

(X
(i)
s̃ ) ds̃

on Λt, by the Fundamental Theorem of Calculus for Lebesgue-Stieltjes integrals. Now we
take expectations and apply Fubini’s theorem to the effect that

E[ϕ(Xs); Λt] = P (ρ > t) −
∫ t

s
E

[

ϕ(Xs̃)
m
∑

i=1

λ
(i)
s̃

(

G′
i

Gi

)

(X
(i)
s̃ ); Λt

]

ds̃. (5.1)

Thereby, we used that E[ϕ(Xt); Λt] = E[Gt(ρ)1Λt
] = P (ρ > t). From the right-continuity

of G1, . . . , Gm and monotone convergence we infer that

G1(x̂1) · · · Gm(x̂m)P (Λt) = lim
n↑∞

E[ϕ(Xsn); Λt]

for any decreasing zero sequence (sn)n∈N in ]0, t]. Finally, we replace s by sn in (5.1) for
each n ∈ N to deduce the claim from monotone convergence.

5.3 Proofs for the market model with default

Proof of Proposition 3.5. Because (3.12) is equivalent to (C.2), Lemma 2.3 entails for the
contractual cash flows and the collateral, funding and hedging costs and benefits that

Ẽ
[

conCFs − colCs(V ) − funCs(Ṽ ) − hedCs(Ṽ )
∣

∣Fs
]

= Ẽ

[

Ds,T (r)Φ(S, V )GT (τ) +

∫ T

s
Ds,t(r)0Bt(V )Gt(τ) dt

∣

∣

∣

∣

Fs

]

a.s.

Now we consider the cash flows defCF(V , Ṽ ) on default, given by (3.10), and note that
{τi < τj} ∩ {s < τ < T } = {s < τi < τj ∧ T } for both i, j ∈ {I, C} with i 6= j. By (3.13)
and (C.3), we obtain

Ẽ
[

defCFs(V , Ṽ )
∣

∣Fs
]

= −Ẽ

[
∫ T

s
Ds,t(r)IBt(V )Gt(τC) dGt(τI)

∣

∣

∣

∣

Fs

]

− Ẽ

[
∫ T

s
Ds,t(r)CBt(V )Gt(τI) dGt(τC)

∣

∣

∣

∣

Fs

]

a.s.

from two applications of Proposition 2.6, since (3.2) ensures τI 6= τC a.s. on {τ < ∞}.
This shows the assertion.
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Proof of Proposition 3.6. According to our considerations preceding Proposition 3.5, it
follows immediately from (C.2) and (C.3) that the integral

∫ T

0
D0,t(r)

(|0Bt(V )|Gt(τ) dt + |IBt(V )|Gt(τC) dVt(τI) + |CBt(V )|Gt(τI) dVt(τC)
)

,

which bounds
∫ t

0 D0,s(r) dAs(V ) for any t ∈ [0, T ], is P̃ -integrable. This justifies that the
process in (3.19) is indeed integrable and we may turn to the second assertion.

For only if we observe that D0,s(τ)VsGs(τ) and hence, V Ms is integrable for fixed
s ∈ [t0, T ]. Indeed, we get

Ẽ
[

D0,s(r)|Vs|Gs(τ)
] ≤ Ẽ

[∣

∣

∣

∣

D0,T (r)Φ(S, V )GT (τ) +

∫ T

s
D0,t(r) dAt(V )

∣

∣

∣

∣

]

< ∞,

by using that D0,s(r)Ds,t(r) = D0,t(r) for any t ∈ [s, T ]. In addition, the Fs-measurability
of
∫ s

0 D0,s̃(r) dAs̃(V ) yields that

V Ms = D0,s(r)VsGs(τ) +

∫ s

0
D0,s̃(r) dAs̃(V )

= Ẽ

[

D0,T (r)Φ(S, V )GT (τ) +

∫ T

0
D0,t(r) dAt(V )

∣

∣

∣

∣

Fs

]

= Ẽ
[

V MT |Fs
]

a.s.,

which implies the martingale property of V M relative to (Ft)t∈[t0,T ]. For if the integrability
of V Ms entails that of D0,s(r)VsGs(τ) and we have

D0,s(r)VsGs(τ) = Ẽ

[

D0,T (r)VT GT (τ) +

∫ T

s
D0,t(r) dAt(V )

∣

∣

∣

∣

Fs

]

a.s., (5.2)

because V Ms = Ẽ[V MT |Fs] a.s. Consequently, it holds that

Ẽ
[|Vs|Gs(τ)

] ≤ Ẽ

[∣

∣

∣

∣

Ds,T (r)Φ(S, V )GT (τ) +

∫ T

s
Ds,t(r) dAt(V )

∣

∣

∣

∣

]

< ∞.

This allows us to multiplicate both sides in (5.2) with D0,s(−r) and, since VT GT (τ) may
be replaced by Φ(S, V )GT (τ), we see that V solves (VE).

Proof of Proposition 3.7. We recall from (3.17) that the continuous process (3.19) is of
finite variation, just as the process [0, T ] × Ω →]0, ∞[, (t, ω) 7→ D0,t(r)(ω). Hence, the
first claim follows directly from Itô’s formula.

Let us now assume that V M is a continuous (Ft)t∈[t0,T ]-semimartingale and choose
t ∈ [t0, T ]. Then from Itô’s product rule we infer that

VtGt(τ) − VsGs(τ) = −
∫ t

s

(

dAs̃(V ) − rs̃Vs̃Gs̃(τ) ds̃
)

+

∫ t

s
D0,s̃(−r) dV Ms̃

for all s ∈ [t0, t] a.s., which gives the first identity. In the case that G(τ) > 0 Itô’s product
rule also shows that V is a continuous (Ft)t∈[t0,T ]-semimartingale and

Vt − Vs =

∫ t

s

1

Gs̃(τ)
dVs̃Gs̃(τ) −

∫ t

s

Vs̃

Gs̃(τ)
dGs̃(τ)

for every s ∈ [t0, t] a.s. Thus, the second identity (3.22) follows from the first (3.21) and
the definition of A in (3.17).

Finally, suppose there is a continuous (Ft)t∈[t0,T ]-semimartingale M such that (3.22)
holds when V M is replaced by M . Then from Itô’s formula we obtain that

V Mt − V Ms = −
∫ t

s
D0,s̃(r)Gs̃(τ)Vs̃

(

rs̃ ds̃ − 1

Gs̃(τI)
dGs̃(τI) − 1

Gs̃(τI)
dGs̃(τC)

)
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+

∫ t

s
D0,s̃(r)Gs̃(τ)

(

dVs̃ +
1

Gs̃(τ)
dAs̃(V )

)

= Mt − Ms

for each s ∈ [t0, t] a.s. This shows that if Mt1 = V Mt1 a.s., then M and V M must be
indistinguishable, as claimed.

Proof of Corollary 3.8. For only if D0,t0(r)Vt0Gt0(τ) is integrable, since the process (3.19)
satisfies this property and V M is a continuous (Ft)t∈[t0,T ]-martingale, by Proposition 3.6.
Moreover, Proposition 3.7 states that (3.22) is valid for all s ∈ [t0, T ] a.s.

For if V is an (Ft)t∈[t0,T ]-semimartingale, since (3.22) holds for any s ∈ [t0, T ] a.s. when

V M is replaced by the (Ft)t∈[t0,T ]-martingale M − Mt0 + V Mt0 . Hence, the uniqueness
assertion of Proposition 3.7 yields Mt − Mt0 = V Mt − V Mt0 for each t ∈ [t0, T ] a.s. and
Proposition 3.6 shows that V solves (VE).

6 Proofs for the volatility model and the valuation PDE

6.1 Proofs for the price process and its quasi variance

Proof of Lemma 4.1. Regarding uniqueness, suppose that S and S̃ are two solutions to
the first SDE in (4.1) with St0 = S̃t0 a.s. For fixed n ∈ N there is kθ ∈ L 2(R+) such that
|θ(·, v)| ≤ kθ for any v ∈ [1/n, n] a.e. Thus, Itô’s formula yields that

E
[|Sτn

t − S̃τn
t |2] ≤

∫ t

t0

(2b+ + k2
θ)(s)E

[|Sτn
s − S̃τn

s |2] ds for all t ∈ [t0, T ]

and the stopping time τn := inf{t ∈ [t0, T ] | Vt /∈]1/n, n[ or |St| ∨ |S̃t| ≥ n}. By Gronwall’s
inequality and supn∈N τn = ∞, the continuous processes S and S̃ are indistinguishable.

Regarding existence and the claimed representation, note that
∫ T

t0
θ(s, Vs)

2 ds < ∞, as
V ([t0, T ] × {ω}) is compact in ]0, ∞[ for any ω ∈ Ω. For this reason, the stochastic and
Lebesgue integrals in (4.2) are well-defined. Hence, if S is an adapted continuous process
for which (4.2) holds, then Itô’s formula shows that it solves the first SDE in (4.1).

The second claim is a direct consequence of Novikov’s condition, which entails that
the continuous local martingale exp(

∫ ·
t0

θ(s, Vs) dŴs − 1
2

∫ ·
t0

θ(s, Vs)
2 ds) is a martingale and

hence,

E[St]e
−
∫ t

t0
b(s) ds

= E

[

χE

[

exp

(
∫ t

t0

θ(s, Vs) dŴs − 1

2

∫ t

t0

θ(s, Vs)2 ds

)∣

∣

∣

∣

Ft0

]]

= E[χ]

for all t ∈ [t0, T ]. Thereby, we used the fact that St is integrable, which follows from the
same reasoning if χ is split into its positive and negative part.

Proof of Lemma 4.2. By using the sublinear growth and Hölder condition for θ, we notice
that |θ(·, v)2 − θ(·, ṽ)2| ≤ (

2kθ + λθ(v1/2 + ṽ1/2)
)

λθ|v − ṽ|1/2 for any v, ṽ > 0 a.e. Hence,
the Cauchy-Schwarz inequality implies that

1

2
E

[
∫ t∧σ

t0

|θ(s, Vs)
2 − θ(s, Ṽs)2| ds

]

≤ c2,1(t) sup
s∈[t0,t]

(

1 + E
[

V σ
s

]

+ E
[

Ṽ σ
s

])

1
2 E
[|V σ

s − Ṽ σ
s |]

1
2

with c2,1 : [t0, T ] → R+ given by c2,1(t) :=
∫ t

t0
(kθ(s) + λθ(s))λθ(s) ds. Moreover, from the

Burkholder-Davis-Gundy inequality we infer that

E

[

sup
s̃∈[t0,t]

∣

∣

∣

∣

∫ s̃∧σ

t0

θ(s, Vs) − θ(s, Ṽs) dŴs

∣

∣

∣

∣

]

≤ c2,2(t) sup
s∈[t0,t]

E
[|V σ

s − Ṽ σ
s |]

1
2 ,

where c2,2 : [t0, T ] → R+ is defined via c2,2(t) := 2(
∫ t

t0
λθ(s)2 ds)1/2. Because we have

c2(t0, ·) = c2,1 + c2,2, the desired estimate follows.
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The proof of Proposition 4.4, which extends several ideas from the proof of Theorem 2.2
in [29], relies on the construction of the following function.

Lemma 6.1. Under (V.7), there is ϕ ∈ C1(]0, ∞[) satisfying the following two conditions:

(i) limx↓0 ϕ(x) = −∞ and ϕ′ > 0. Further, ϕ is twice continuously differentiable on
]0, ε] and [ε, ∞[ such that ϕ′′(x) > 0 for any x > ε.

(ii) ((η2/2)ϕ′′ + ζϕ′)(·, x) is bounded from below by −c0ϕ0(x), whenever x < ε, and by
−cζϕζ(x)ϕ′(x), if x > ε, for all x > 0 with x 6= ε a.e.

Proof. We define ϕ̂ ∈ C1([ε, ∞[) by ϕ̂(x) := (1/ε) exp(
∫ x

ε ϕζ(y)−1 dy). Then it follows
readily that the function ϕ :]0, ∞[→ R given by ϕ(x) := log(x) for x < ε and

ϕ(x) := log(ε) +

∫ x

ε
ϕ̂(y) dy for x ≥ ε

is a feasible choice, which, however, is not of class C2, since ϕ′′
+(ε) = 1/(ϕζ(ε)ε).

Proof of Proposition 4.4. The assertion follows if we can verify that the stopping time
σ := inf{t ∈ [t0, T ] | Vt ≤ 0} satisfies σ = ∞ a.s. To this end, we choose n0 ∈ N with
v0/n0 < ε < n0v0 and introduce two stopping times by

σm := inf{t ∈ [t0, T ] | Vt ≤ v0/m} and σn := inf{t ∈ [t0, T ] | Vt ≥ nv0}

for m, n ∈ N with m ∧ n ≥ n0. Further, let ϕ ∈ C1(]0, ∞[) satisfy the conditions of
Lemma 6.1 and set ϕ(x) := 0 for any x ∈] − ∞, 0] and Bε(ω) := {t ∈ [t0, T ] | Vt(ω) 6= ε}
for all ω ∈ Ω. Then the generalised Itô formula in [33] gives

ϕ(V
σm,n

T ) − ϕ(v0) =

∫ T ∧σm,n

t0

ϕ′(Vs) dVs +
1

2

∫

Bε

ϕ′′(Vs)1[t0,σm,n](s) d〈V 〉s

≥ −kε − ϕζ(nv0)ϕ′(nv0)

∫ T

t0

cζ(s) ds +

∫ T ∧σm,n

t0

ϕ′(Vs)η(s, Vs) dW̃s a.s.,

where σm,n := σm ∧ σn and kε := ϕ0(ε)
∫ T

t0
c0(s) ds + ϕζ(ε)ϕ′(ε)

∫ T
t0

cζ(s) ds. For any l ∈ N

we define a stopping time by σ̂l := inf{t ∈ [t0, T ] | ∫ t
t0

ϕ′(Vs)2η(s, Vs)2 ds ≥ l}. Then

E
[

ϕ(V
σm,n

T )
]

= lim
l↑∞

E
[

ϕ(V
σ̂l∧σm,n

T )
] ≥ ϕ(v0) − kε − ϕζ(nv0)ϕ′(nv0)

∫ T

t0

cζ(s) ds

follows from dominated convergence. At the same time, as Vσm = v0/m a.s. on {σm < ∞}
and limx↓0 ϕ(x) = −∞, we obtain that

E
[

ϕ(V
σm,n

T )
] ≤ ϕ(v0/m)P (σm ≤ σn ∧ T ) + max

x∈]0,nv0]
ϕ+(x).

These two estimates imply that limm↑∞ P (σm ≤ σn ∧ T ) = P (σ ≤ σn ∧ T ) = 0. Hence,
σ > σn ∧ T a.s. and the desired result follows from the fact that supn∈N σn = ∞.

Proof of Proposition 4.6. (i) The drift and diffusion coefficients of the SDE (4.11) are
independent of the first spatial coordinate. For this reason, the claim follows directly from
Corollary 3.9, Remark 3.10 and Proposition 3.13 in [26], which yield pathwise uniqueness
for the second SDE in (4.1).

(ii) From Theorem 3.27 in [26] we know that there is a unique strong solution V t0,v0

to the second SDE in (4.1) such that V t0,v0
t0

= v0 a.s. According to Proposition 4.4, the
positivity of V t0,v0(ω) for P -a.e. ω ∈ Ω holds and, by taking a continuous modification if
necessary, we may assume that V t0,v0(ω) > 0 for all ω ∈ Ω.
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Furthermore, we may choose a continuous process Xt0,x0,v0 that is adapted to the
augmented natural filtration of the two-dimensional (Ft)t∈[0,T ]-Brownian motion (W, W̃ )
and satisfies (4.3) for V = V t0,v0 . This argumentation justifies the assertion.

(iii) For any sequence (sn, xn, vn)n∈N and each point (s, x, v) in [0, t] × R×]0, ∞[ such
that s ≤ sn for all n ∈ N and limn↑∞(sn, xn, vn) = (s, x, v), Theorem 21.4 and Lemma 21.9
in [1] yield

lim
n↑∞

E
[

ϕ(sn, Xsn,xn,vn

t , V sn,vn

t )
]

= E
[

ϕ(s, Xs,x,v
t , V s,v

t )
]

if (Xsn,xn,vn

t , V sn,vn

t )n∈N converges in probability to (Xs,x,v
t , V s,v

t ). By using Lemma 4.2,
this can be inferred from Theorem 4.6 in [26], which gives a first moment estimate for
random Itô processes and implies the two estimates (4.6) and (4.7).

(iv) According to Lemma 3.5 in [24], for instance, the Markov property of the triple
((X̂, V̂ ), (F̂t)t∈[0,T ],P) holds if we can show that

Es,x,v
[

ϕ(X̂t, V̂t)
∣

∣F̂s̃
]

= Es̃,X̂s̃,V̂s̃

[

ϕ(X̂t, V̂t)
]

Ps,x,v-a.s.

for any s, s̃, t ∈ [0, T ] with s ≤ s̃ ≤ t, each (x, v) ∈ R×]0, ∞[ and every Lipschitz continuous
function ϕ : R×]0, ∞[→ [0, 1]. This follows from the same reasoning as in the proof of
Theorem 5.1.5 in [34].

Finally, as Lemma 3.14 in [24] shows that any Markov process with right-continuous
paths that is right-hand Feller is also strongly Markov, the proof is complete.

6.2 Proofs for the valuation function as mild and classical solution

Proof of Theorem 4.10. (i) Let (s, x, v) ∈ [0, T ] × R×]0, ∞[ and (X, V ) be a solution
to (4.11) on [s, T ] with (Xs, V s) = (x, v) a.s., in which case it also solves (4.19) under
P̃ . In particular, P̃s,x,v must be its law under P̃ . Hence, (4.14) and (4.15) hold and our
discussion preceding (4.16) shows that (M.1)-(M.4) are valid. For this reason, we may
consider solutions to (VE).

Since α, β, Ĥ and u are continuous, so are the collateral process αV , the pre-default
funding process (1 − α)V , the pre-default hedging process Ĥ(·, exp(X), V, V ) and the
close-out value βV , which justifies that (C.1) holds.

By Remark 4.8, the conditions (C.2) and (C.3) follow from (4.24) and the boundedness
of u. For this reason, Propositions 3.6 and 3.7 entail that V is an (Ft)t∈[s,T ]-semimartingale
and the process M : [s, T ] × Ω → R given by

Mt := D0,t(r)VtGt(τ) +

∫ t

0
D0,ŝ(r)Gŝ(τ)

(

B̂(ŝ, exp(Xŝ), Vŝ, Vŝ) + (r̂ − gI − gC)(ŝ)Vŝ

)

dŝ

is a continuous (Ft)t∈[s,T ]-martingale under P̃ such that

Vt = φ(exp(XT ), VT ) +

∫ T

t
B̂(t̂, exp(Xt̂), Vt̂, Vt̂) dt̂ −

∫ T

t

D0,t̂(−r)

Gt̂(τ)
dMt̂ a.s. (6.1)

for all t ∈ [s, T ] a.s. Thereby we used the definitions of the two random functionals A, B
and the function B̂ in (3.17), (3.24) and (4.16) to find the relation

Ȧt(Y ) = Gt(τ)
(

B̂(t, exp(Xt), Vt, Y ) + (r̂ − gI − gC)(t)Y
)

(6.2)

for a.e. t ∈ [0, T ] a.s. for any continuous Y ∈ S . Because φ(exp(XT ), VT ) is bounded and
∫ T

s |B̂(t, exp(Xt), Vt, Vt)| dt is integrable, we obtain that

Ẽ

[

sup
t∈[s,T ]

∣

∣

∣

∣

∫ t

s

D0,ŝ(−r)

Gŝ(τ)
dMŝ

∣

∣

∣

∣

]

< ∞.
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In particular, the (Ft)t∈[s,T ]-local martingale
∫ ·

s D0,ŝ(−r)Gŝ(τ)−1 dMŝ is of class (DL) and
therefore, it must be a martingale. Now we may take expectations in (6.1) to see that u
satisfies (4.22).

(ii) We already know that (X, V ) solves (4.19) on [s, T ] under P̃ . Thus, the condition
on the filtration entails that the process N : [s, T ] × Ω → R defined via

Nt := Vt +

∫ t

s
B̂(ŝ, exp(Xŝ), Vŝ, Vŝ) dŝ

is a continuous (Ft)t∈[s,T ]-martingale under P̃ . Indeed, its integrability follows directly

from the definition of a mild solution. The martingale property Ẽ[Nt|Fs̃] = Ns̃ a.s. for
any s̃, t ∈ [s, T ] with s̃ ≤ t is implied by

Ẽ

[

Vt +

∫ t

s̃
B̂(ŝ, exp(Xŝ), Vŝ, Vŝ) dŝ

∣

∣

∣

∣

Fs̃

]

= Vs̃ a.s.

This identity is a consequence of Proposition 4.6, by extending the Markov property of
the diffusion with measure theoretical methods. See Proposition 3.7 in [24][Chapter 3],
for example. In particular, V is an (Ft)t∈[s,T ]-semimartingale.

Hence, for any continuous (Ft)t∈[s,T ]-local martingale M that is indistinguishable from
the stochastic integral

∫ ·
s D0,ŝ(r)Gŝ(τ) dNŝ the representation (6.1) holds. Now we obtain

that

Mt + D0,s(r)u(s, x, v)Gs(τ) = D0,t(r)VtGt(τ) +

∫ t

s
D0,ŝ(r) dAŝ(V )

for each t ∈ [s, T ] a.s. by the uniqueness assertion of Proposition 3.7. The boundedness
of u and the integrability of the random variable

∫ T
s D0,ŝ(r)|Ȧŝ(V )| dŝ imply that

Ẽ

[

sup
t∈[s,T ]

∣

∣

∣

∣

D0,t(r)VtG(τ) +

∫ t

0
D0,ŝ(r) dAŝ(V )

∣

∣

∣

∣

]

< ∞.

Thus, D0,·(r)V G(τ)+
∫ ·

0 D0,ŝ(r) dAŝ(V ) is a continuous (Ft)t∈[s,T ]-local martingale that is
of class (DL). Therefore, it is a martingale and we may invoke Proposition 3.6 to complete
the proof.

Proof of Proposition 4.12. By (P.1), (P.2) and (P.4), all the rates r̂, ĉ+, ĉ−, f̂+, f̂−, ĥ+, ĥ−

and the functions gI , gC , α, β are integrable. Thus, (P.5) ensures that the affine growth
condition (4.25) and the Lipschitz condition (4.26) on compacts sets holds for B̂.

Moreover, we note that B̂(t, ·, ·, ·) is continuous for a.e. t ∈ [0, T ], since π̂ and Ĥ
are continuous, according to (P.3) and (P.4). Hence, as we know that Proposition 4.6 is
applicable, all requirements of Theorem 2.15 in [25] are met and the assertions follow.

Proof of Corollary 4.14. By Proposition 4.6 and our discussion preceding the corollary,
the assumptions (2.2), (2.3) and (2.9)-(2.13) in [2] hold. Further, from (P.5) and (P.6)
we infer that B̂ is of affine growth and locally Lipschitz continuous in y ∈ R, uniformly
in (t, s, v) ∈ [0, T ]×]0, ∞[2 , and it is also locally Hölder continuous. This shows that the
hypotheses (2.19), (2.20) and (2.21) in [2] are satisfied and the assertion follows from
Theorem 2.4 in this reference.
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The normal approximation of compound Hawkes

functionals

Mahmoud Khabou

December 2022

We derive quantitative bounds in the Wasserstein distance for the approxi-
mation of stochastic integrals of deterministic and non-negative integrands with
respect to Hawkes processes by a normally distributed random variable. Our
results are specifically applied to compound Hawkes processes, and improve on
the current literature where estimates may not converge to zero in large time,
or have been obtained only for specific kernels such as the exponential or Erlang
functions.
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Dynamic programming principle and computable prices 
in  financial market models with transaction costs 

Emmanuel Lépinette 

Paris Dauphine University, PSL 

How to compute (super) hedging costs in rather general   financial market 
models with transaction costs in discrete-time ? Despite the huge literature on 
this topic, most of results are characterizations of the super-hedging prices 
while it remains difficult to deduce numerical procedure to estimate them. We 
establish here a dynamic programming principle and we prove that it is 
possible to implement it under some conditions on the conditional supports of 
the price and volume processes for a large class of market models including 
convex costs such as order books but also non convex costs, e.g.  fixed cost 
models.

Joint work with Vu Duc Think.



Joint SPX--VIX calibration with Gaussian 
polynomial volatility models: deep pricing with 

quantization hints

Shaun (Xiaoyuan) Li

Université Paris 1 Panthéon-Sorbonne

We consider the joint SPX-VIX calibration within a general class of Gaussian polynomial 
volatility models in which the volatility of the SPX is assumed to be a polynomial function of 
a Gaussian Volterra process defined as a stochastic convolution between a kernel and a 
Brownian motion. By performing joint calibration to daily SPX-VIX implied volatility surface 
data between 2012 and 2022, we compare the empirical performance of different kernels 
and their associated Markovian and non-Markovian models, such as rough and non-rough 
path-dependent volatility models. In order to ensure an efficient calibration and a fair 
comparison between the models, we develop a generic  unified method in our class of 
models for fast and accurate pricing of SPX and VIX derivatives based on functional 
quantization and Neural Networks. For the first time, we identify a conventional one-factor 
Markovian continuous stochastic volatility model that is able to achieve remarkable fits of 
the implied volatility surfaces of the SPX and VIX together with the term structure of VIX 
futures. What is even more remarkable is that our conventional one-factor Markovian 
continuous stochastic volatility model outperforms, in  all market conditions, its rough and
 non-rough path-dependent  counterparts with the same number of parameters.

Joint work with Eduardo Abi Jaber and Camille Illand



Fractional integral equations with weighted

Takagi-Landsberg functions

Vitalii Makogin

January 6, 2023

In the talk, we find fractional Riemann-Liouville derivatives for the Takagi-
Landsberg functions. Moreover, we introduce their generalizations called weighted
Takagi-Landsberg functions. Namely, for constants cm,k ∈ [−L,L], k,m ∈ N0,
we define a weighted Takagi-Landsberg function as yc,H : [0, 1] → R via

yc,H(t) =

∞∑
m=0

2m(
1
2−H)

2m−1∑
k=0

cm,kem,k(t), t ∈ [0, 1],

where H > 0, {em,k,m ∈ N0, k = 0, . . . , 2m − 1} are the Faber-Schauder func-
tions on [0,1]. The class of the weighted Takagi-Landsberg functions of order
H > 0 on [0, 1] coincides with the H-Hölder continuous functions on [0, 1].
Based on computed fractional integrals and derivatives of the Haar and Schauder
functions, we get a new series representation of the fractional derivatives of a
Hölder continuous function. This result allows to get the new formula of a
Riemann-Stieltjes integral. The application of such series representation is the
new method of numerical solution of the Volterra and linear integral equations
driven by a Hölder continuous function.

1



Misfortunes Never Come Singly:
Managing the Risk of Chain Disasters

Alexandra Brausmann*, Lucas Bretschger**, Aleksey Minabutdinov**

and Clément Renoir**

* University of Vienna
**ETH Zurich

December 20, 2022

Abstract

The paper studies optimal disaster prevention and growth policies
in an environment where the arrivals of primary disasters trigger sub-
sequent shocks through contagion effects. To model the interrelated
disasters, we use the Hawkes process, which is a novelty in general
equilibrium economics. We derive analytical solutions for the opti-
mal growth path and an optimal mitigation policy. We find that the
existence of interrelationships between different shocks makes optimal
disaster spending stochastic, which is in contrast to the previous litera-
ture that advocates a constant share of income for disaster mitigation.
An efficient abatement policy depends positively on the arrival rate
of the primary shock and jumps upwards when an initial disaster oc-
curs. Such behavior is consistent with the evidence on economy-wide
aid during the recent COVID-19 pandemic. We extend the analysis by
including Brownian uncertainty and random catastrophe magnitude in
the Hawkes process, which shows the versatility of our approach.



Convex stochastic optimization 

Teemu Pennanen 

King's College London 

We study dynamic programming, duality and optimality conditions in 
general convex stochastic optimization problems introduced by 
Rockafellar and Wets in the 70s. We give a general formulation of 
the dynamic programming recursion and derive an explicit dual 
problem in terms of two dual variables, one of which is the shadow 
price of information while the other one gives the marginal cost of a 
perturbation much like in classical Lagrangian duality. Existence of 
primal solutions and the absence of duality gap are obtained 
without compactness or boundedness assumptions. In the context 
of financial mathematics, the relaxed assumptions are satisfied 
under the well-known no-arbitrage condition and the reasonable 
asymptotic elasticity condition of the utility function. We extend 
classical portfolio optimization duality theory to problems of optimal 
semi-static hedging. Besides financial mathematics, we obtain 
several new results in stochastic programming and stochastic 
optimal control. 



Mean Field Optimization Problem Regularized by Fisher
Information

Abstract: Recently there is a rising interest in the research of mean-field op-
timization, in particular because of its role in analyzing the training of neural
networks. In this talk, by adding the Fisher Information (in other word, the
Schrodinger kinetic energy) as the regularizer, we relate the mean-field opti-
mization problem with a so-called mean field Schrodinger (MFS) dynamics. We
develop a free energy method to show that the marginal distributions of the
MFS dynamics converge exponentially quickly towards the unique minimizer of
the regularized optimization problem. We shall see that the MFS is a gradient
flow on the probability measure space with respect to the relative entropy. Fi-
nally we propose a Monte Carlo method to sample the marginal distributions of
the MFS dynamics. This is an ongoing joint work with Julien Claisse, Giovanni
Conforti and Songbo Wang.
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ROBUST ASYMPTOTIC INSURANCE-FINANCE ARBITRAGE

THORSTEN SCHMIDT

Abstract. In most cases, insurance contracts are linked to the financial markets, such as through
interest rates or equity-linked insurance products. To motivate an evaluation rule in these hybrid
markets, (Artzner, Eisele, Schmidt, 2022) introduced the notion of insurance-finance arbitrage. We
extend their setting by incorporating model uncertainty. To this end, we allow statistical uncertainty
in the underlying dynamics to be represented by a set of priors P. Within this framework we
introduce the notion of robust asymptotic insurance-finance arbitrage and characterize the absence
of such strategies in terms of the concept of QP-evaluations. This is a nonlinear two-step evaluation
which guarantees no robust asymptotic insurance-finance arbitrage. Moreover, the QP-evaluation
dominates all two-step evaluations as long as we agree on the set of priors P which shows that
those two-step evaluations do not allow for robust asymptotic insurance-finance arbitrages.

This is joint work with Katharina Oberpriller and Moritz Ritter
Published at: arXiv:2207.13350



Approximation of PDEs on Wasserstein space and 
application to mean field control 

Mehdi Talbi 

ETH Zürich  

We present a finite-dimensional approximation for a class of partial differential 
equations on the space of probability measures. These equations are satisfied in 
the sense of viscosity solutions. Our main result states the convergence of the 
viscosity solutions of the finite-dimensional PDE to the viscosity solutions of the 
PDE on Wasserstein space, provided that uniqueness holds for the latter, and 
heavily relies on an adaptation of the Barles & Souganidis monotone scheme to 
our context. We then apply this result to the Hamilton-Jacobi-Bellman and 
Bellman-Isaacs equations arising in stochastic control and differential games, for 
which we show the convergence of the value function of the finite population 
problem to the value function of the mean field problem under rather weak 
regularity requirements.




Ergodic robust maximization of asymptotic growth under 
stochastic volatility 
  
                                  Josef Teichmann (ETH) 

We consider an asymptotic robust growth problem under model 
uncertainty and in the presence of (non-Markovian) stochastic covariance. 
We fix two inputs representing the instantaneous covariance for the asset 
process X, which depends on an additional stochastic factor process Y, as 
well as the invariant density of X together with Y. The stochastic factor 
process Y has continuous trajectories but is not even required to be a 
semimartingale. Our setup allows for drift uncertainty in X and model 
uncertainty for the local dynamics of Y. This work builds upon a recent 
paper of Kardaras & Robertson, where the authors consider an analogous 
problem, however, without the additional stochastic factor process. Under 
suitable, quite weak assumptions, we are able to characterize the robust 
optimal trading strategy and the robust optimal growth rate. The optimal 
strategy is shown to be functionally generated and, remarkably, does not 
depend on the factor process Y. Our result provides a comprehensive 
answer to a question proposed by Fernholz in 2002. Mathematically, we 
use a combination of partial differential equation (PDE), calculus of 
variations and generalized Dirichlet form techniques.  This is a joint work 
with David Itkin, Benedikt Koch, and Martin Larsson. 



     Noncommutative martingale inequalities  

Quanhua Xu 

Université de Franche-Comté 


We will present the noncommutative analogues of the classical 
Burkholder-Gundy square function inequalities, as well as a bref 
introduction to Ito-Clifford stochastic integral. 
 



VOLTERRA SANDWICHED VOLATILITY MODEL: MARKOVIAN

APPROXIMATION AND HEDGING

G. DI NUNNO1 AND A. YURCHENKO-TYTARENKO2

We propose a new market model with a stochastic volatility driven by a general Hölder continuous

Gaussian Volterra process, i.e. the resulting price is not a Markov process. On the one hand, it

is consistent with empirically observed phenomenon of market memory, but, on the other hand,

brings a vast amount of issues of a technical nature, especially in optimization problems. In the

talk, we describe a way to obtain a Markovian approximation to the model as well as exploit it for

the numerical computation of the optimal hedge. Two numerical methods are considered: Nested

Monte Carlo and Least Squares Monte Carlo. The results are illustrated by simulations.

1Department of Mathematics, University of Oslo; Department of Business and Management Science,

NHH Norwegian School of Economics, Bergen

Email address: giulian@math.uio.no

2Department of Mathematics, University of Oslo

Email address: antony@math.uio.no

The present research is carried out within the frame and support of the ToppForsk project nr. 274410 of the

Research Council of Norway with title STORM: Stochastics for Time-Space Risk Models.
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